Errata for the 2nd edition of
"The Symmetric Group"
In the list that follows p / l (respectively, $\mathrm{p} / / \mathrm{l}$) refers to the lth line from the top (respectively, bottom) of page p. Also, $A \longleftarrow B$ means A is to be replaced by B.
ix $/ 3:$ Eition \longleftarrow Edition
12//15: epresentation \longleftarrow representation
12//3: $X(e) \longleftarrow X(\epsilon)$
16//10: add "for all $w \in W^{\prime}$ " to the definition of W^{\perp}
20/7: $T \longleftarrow A$
21/3: $H \longleftarrow \mathcal{H}$
$35 / 1-2$: This is only true if the field has characteristic zero or is relatively prime to $|G|$.
$35 / / 1: A \cong B \longleftarrow A=B$
36//11-12: Replace the first two sentences by "Now suppose $\chi=\psi$ so we can take $A=B . "$

37/9: orthogonality relations «"orthogonality relations" with respect to the bilinear form $\langle\cdot, \cdot\rangle^{\prime}$.

39/6: $13 \longleftarrow 15$
50/8: The proof given in the exercise is only valid if the field has characteristic zero or is relatively prime to $|G|$.
$51 / / 4$: One does not need to use the fact that C_{n} is normal in D_{n}.
$64 / 1$: linearity by conjugate linearity \longleftarrow conjugate linearity by linearity
$64 / / 1$: add "or 0" at the end of the last sentence
65/3-4: dominance lemma \longleftarrow Dominance Lemma
65/5-6: Replace this sentence by "If $\lambda=\mu$, suppose first that two elements in the same row of s are also in the same column of t. Then, by part 4 of the Sign Lemma, $\kappa_{t}\{s\}=\mathbf{0}$. If no such pair of elements exist then, by the same argument which established the Dominance Lemma, $\{s\}=\pi\{t\}$ for some $\pi \in C_{t}$."

65/9: $\left\{s_{i}\right\}$ should be all boldface
65/19: exits \longleftarrow exist
65/10: $\sum_{i} \pm c_{i} \boldsymbol{e}_{t} \longleftarrow \sum_{i} d_{i} \boldsymbol{e}_{t}$ where $d_{i}= \pm c_{i}$ or 0
65//2: $\left\{s_{i}\right\}$ should be all boldface
$66 / / 16$: The sum should be over $\lambda \unrhd \mu$
69/10: $(k, l)\{s\}$ has fewer inversions than $\{s\} \longleftarrow(k, l) s$ has fewer inversions than s
70/13: is is is
$70 / / 11: \mathbf{e}_{\pi t} \longleftarrow(\operatorname{sgn} \pi) \mathbf{e}_{\pi t}$
$73 / / 7:[\pi t] \unrhd[t] \longleftarrow[\pi t] \triangleright[t]$
$77 / / 11:\left\{t_{i}\right\} \longleftarrow\left\{t^{i}\right\}$
79/5: Here and in the rest of this section $\mathbb{C}\left[\mathcal{T}_{\lambda \mu}\right]$ should be $\mathbb{C} \mathcal{T}_{\lambda \mu}$
81/6: cyclicity \longleftarrow cyclicity of
83//15: $\mathcal{T}_{\lambda \mu} \longleftarrow \mathcal{T}_{\lambda \mu}^{0}$
84//6-7: T_{2} should be boldface in four places
85/7: In "some T appearing" the T should be boldface

88/14: One can not use an arbitrary ordering of the tableaux. Instead compute the row word π_{t}, as defined on page 101, for each tableau t and then order the tableaux by the lexicographic ordering of their row words.

95//8: "Case 1: $y=m$." should be underlined
97/1: "Subcase 2b: $u \neq v$." should be underlined
97/7: $r_{y} \longleftarrow c_{y}$
100/17: $\mathrm{P} \longleftarrow P$
105//8: The first line of $P(\pi)$ should be 13568
109//3: $y_{L_{j}} \longleftarrow x_{L_{j}}$
113//7: maximum \longleftarrow minimum
114: Throughout the example, the 5 and the 6 should be interchanged
114//10: Remove the period.
115/4: $\mathrm{Rb} \longleftarrow \mathrm{Bb}$
115//1: standard \longleftarrow partial
120//8-14: The notation j_{a} should be j^{a} everywhere for $a=c, d$.
120//5: $V \cup P \cup W$ and $V \cup P \cup W \longleftarrow V \cup P \cup W$ and $V \cup Q \cup W$
$126 / / 14: T_{\leq c_{6}} \longleftarrow T^{\leq c_{6}}$
126: In lines $1,5,6$, and 10 from the bottom replace each "standard" by "partial"
128//19: $T_{k, l}^{\prime}$ if $k<0 \longleftarrow T_{h, l}^{\prime}$ if $h \leq 0$
129/9: Remove the period after the close parenthesis.
129/17: $a_{h, j} \longleftarrow a l_{h, j}$
129//3: $14^{3} \longleftarrow 14^{4}$
130//17: $r^{\prime} \longleftarrow r_{0}^{\prime}$
$133 / / 10: i \geq 2 \longleftarrow j \geq 2$
138//16: The sum should only be over n-vertex subtrees of the infinite binary comb
145//10: Let S be a se \longleftarrow Let S be a set
147/14: in of $T \longleftarrow$ of T
150/6: $T \longleftarrow T^{\prime \prime}$
150/7-9: Thus p^{\prime} starts weakly to the east of $p^{\prime \prime}$. By the same arguments as in Lemma 4.3, p stays to the east of p^{\prime}. Since p^{\prime} reaches the east end of row $i^{\prime}=i$ by assumption, so must $p \longleftarrow$ Thus r^{\prime} starts weakly to the east of $r^{\prime \prime}$. By the same arguments as in Lemma 4.2.3, r^{\prime} stays to the east of $r^{\prime \prime}$. Since $r^{\prime \prime}$ reaches the east end of row $i^{\prime}=i^{\prime \prime}$ by assumption, so must r^{\prime}

155/11: $x_{1}^{\mu_{1}} x_{2}^{\mu_{2}} \cdots x_{m}^{\mu_{l}} \longleftarrow x_{1}^{\mu_{1}} x_{2}^{\mu_{2}} \cdots x_{l}^{\mu_{l}}$
157/5: the the row \longleftarrow the row
160/8: describes \longleftarrow describe
161//8: $i, j \longleftarrow$ distinct i, j
165//15: $h_{i-j} \longleftarrow h_{j-i}$
176/7: $s_{\mu}(\mathbf{x}) s_{\nu}(\mathbf{y}) s_{\lambda}(\mathbf{z}) \longleftarrow s_{\mu}(\mathbf{x}) s_{\lambda}(\mathbf{z})$
180/8: (the number of rows of ξ)-1 \longleftarrow the number of rows of ξ below the first row
180//7: $\alpha \backslash \alpha \longleftarrow \alpha \backslash \alpha_{1}$
192/2: meet , if \longleftarrow meet, if
194 equation (5.4): $a_{1}<a_{1} \longleftarrow a_{1}<a_{2}$
194-195: In some books these two pages are switched
$215 / 13: \mathcal{B}_{2} \longleftarrow B_{2}$

215/14: subsets \longleftarrow nonempty subsets
216/16: These components \longleftarrow The components of the subgraph F
216//7: that both \longleftarrow that
217/17: $v_{n}, v_{1} \in E(T) \longleftarrow v_{n} v_{1} \in E(T)$ where $n \geq 3$.
217//15: neighbors $v \longleftarrow$ neighbors of v
221//4: $(n-k) I \longleftarrow(n-2 k) I$
227//12: [Scü 76] $\longleftarrow[$ Scü 77]
227//6: Stn \longleftarrow Sta
Thanks to Simcha Barkai, Seth Chaiken, Akex Chandler, Sam Clearman, Niklas Eriksen, Jonathan Farley, Darij Grinberg, Yuval Khachatryan, Nicholas Mayers, Yves de Montaudouin, Kelvin Souza de Oliveira, Margaret Readdy, and Yaokun Wu, for catching some of these errors.

