- **1.** Sagan 2.12 #10.
- **2.** Sagan 2.12 # 11.
- **3.** Sagan 2.12 # 12.
- **4.** Sagan 2.12 #13 (Hint: Use #12).

5. Let V be a vector space over a field k. Recall the dual space V^* is the set of linear functionals on V, i.e. linear maps from V to the field k. Suppose further that V is a kG module. Define an action on V^* by:

$$(g \cdot \psi)(v) := \psi(g^{-1}v).$$

- **a)** Prove this makes V^* into a left G module.
- **b)** Suppose $k = \mathbb{C}$. Describe the character χ_{V^*} in terms of the character χ_V .

c) Now suppose $V = S^{(2,1)}$ and k is a field of characteristic 3, (for example $\mathbb{Z}/3\mathbb{Z}$). Prove that $S^{(2,1)}$ is not isomorphic to its dual.