Math 464/564 Fall 2017 Homework Number 5- Due 10/3/17

1. The character table for S_{5} is below:

	e	(12)	$(12)(34)$	(123)	$(123)(45)$	(1234)	(12345)
χ_{1}	1	1	1	1	1	1	1
χ_{2}	1	-1	1	1	-1	-1	1
χ_{3}	4	-2	0	1	1	0	-1
χ_{4}	4	2	0	1	-1	0	-1
χ_{5}	5	-1	1	-1	-1	1	0
χ_{6}	5	1	1	-1	1	-1	0
χ_{7}	6	0	-2	0	0	0	1

a) Decompose the characters $\chi_{5} \otimes \chi_{6}$ and $\chi_{4} \otimes \chi_{7}$ into irreducible characters.
b) Choose χ one of the irreducible characters of S_{4} of degree 3. Determine the decomposition of $\chi \uparrow^{S_{5}}$ using Frobenius reciprocity.
c) Let S_{5} act on two element subsets of $\{1,2,3,4,5\}$, giving a 10 -dimensional permutation module. Using the orthogonality relations, decompose this character into irreducibles.
2.
a) Write down the character table of the Klein 4-group V.
b) Consider the subgroup $\{e,(12)(34),(13)(24),(14)(23)\} \leq S_{4}$. Check it is isomorphic to V. Let ψ be a nontrivial irreducible character of V. Calculate the decomposition of $\psi \uparrow^{S_{4}}$.
3. Repeat the previous problem except replace V by the cyclic group of order 5 and the subgroup $\langle(12345)\rangle \leq S_{5}$.
4. Let G act on a set X and let χ be the corresponding permutation character. Recall that $\chi(g)$ counts the number of fixed points.
a) Let 1_{G} be the trivial character. Prove that $\left\langle\chi, 1_{G}\right\rangle$ is the number of orbits of G acting on X. Hint: Count the set $\{(g, x) \in G \times X \mid g x=x\}$ in two different ways, by first summing over g and then by summing over x.
b) Show that $\chi^{2}:=\chi \otimes \chi$ is the permutation character for the action of G on $X \times X$.
c) Explain why $\langle\chi, \chi\rangle=\left\langle\chi^{2}, 1_{G}\right\rangle$.
d) Suppose that G acts transitively on X (i.e. there is only one orbit). From above we know $\chi-1_{G}$ is a character. Prove that $\chi-1_{G}$ is irreducible if and only if G has precisely two orbits on $X \times X$.
e) Say the action is doubly transitive if for any pairs $(a, b),(c, d) \in X \times X$, with $a \neq b$ and $c \neq d$, there is a $g \in G$ so that $g(a, b)=(c, d)$. Prove this is equivalent to there being exactly two orbits on $X \times X$.
f) Prove that S_{n} acting on $\{1,2, \ldots, n\}$ is doubly transitive. Conclude that S_{n} has an irreducible character of degree $n-1$.

