Math 464/564 Fall 2017 Homework Number 3- Due 9/19/17

1. Sagan $1.13 \# 4$.
2. Sagan $1.13 \# 7$.
3. In this problem we give an alternate proof of Maschke's Theorem. So let V be a finite-dimensional G module with submodule U.
a) Show there is a linear map $\pi: V \rightarrow V$ such that $\operatorname{Image}(\pi)=U, \pi(u)=u$ for all $u \in U$, and $\pi \circ \pi=\pi$. The map π is called a projection onto U.
b) If π is as above, prove that $V \cong U \oplus \operatorname{kernel}(\pi)$ as vector spaces.
c) Define a new map as follows:

$$
\tilde{\pi}(v)=\frac{1}{|G|} \sum_{g \in G} g \pi\left(g^{-1} v\right)
$$

Prove that $\tilde{\pi}$ is also a projection onto U.
d) Verify that $\tilde{\pi}$ is a G-module map. Conclude that $V \cong U \oplus \operatorname{ker}(\tilde{\pi})$ as G-modules. Notice this proof makes quite clear why we only need that the characteristic of our field does not divide $|G|$, else we would be dividing by zero.
4. Recall that the center of a group is $Z(G)=\{z \in G \mid z g=g z \forall g \in G\}$. Let X be an irreducible representation of G and let $z \in Z(G)$. Prove that $X(z)$ is a multiple of the identity matrix.
5. Suppose U, V, W are G modules and let $T \in \operatorname{Hom}_{G}(U, V)$ and $S \in \operatorname{Hom}_{G}(V, W)$. Prove that $S \circ T \in \operatorname{Hom}_{G}(U, W)$. Conclude that $\operatorname{End}_{G}(V)$ is an algebra.
6. Let G be a finite group and let $\psi: G \rightarrow G L_{2}(\mathbb{C})$ be a representation. Suppose there are elements $g, h \in G$ so that the matrices $\psi(g)$ and $\psi(h)$ do not commute. Prove that ψ is irreducible. Would the same be true for $G L_{3}(\mathbb{C})$? Explain.

