Math 464/564 Fall 2017 Homework Number 2- Due 9/12/17

1. The dihedral group D_8 acts on \mathbb{R}^2 naturally, where r acts as a 90 degree counterclockwise rotation and s acts as a reflection across the line y = x. Write the matrices for r and s in the standard basis.

- a) Explain geometrically why this representation is irreducible over \mathbb{R} .
- **b)** Is the same true over \mathbb{C} ? Explain.

2. Give an example if an infinite group G, different from the one in the book, and a finite-dimensional $\mathbb{C}G$ module where Maschke's Theorem fails.

3. Page 48 # 1.

4. Page 49 #6.

5. (James-Liebeck p. 52) Define permutations $a, b, c \in S_6$ by:

$$a = (123), b = (456), c = (23)(45)$$

Let $G = \langle a, b, c \rangle$, the subgroup generated by $\{a, b, c\}$.

a) Check that

$$a^{3} = b^{3} = c^{2} = 1, ab = ba$$

 $c^{-1}ac = a^{-1}, c^{-1}bc = b^{-1}$

Deduce that G has order 18.

b) Supose that ϵ and μ are complex cube roots of unity. Prove that there is a representation ρ of G over \mathbb{C} such that:

$$\rho(a) = \left(\begin{array}{cc} \epsilon & 0 \\ 0 & \epsilon^{-1} \end{array} \right), \rho(b) = \left(\begin{array}{cc} \mu & 0 \\ 0 & \mu^{-1} \end{array} \right), \rho(c) = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right).$$

For which values of ϵ, μ is ρ faithful? For which values is it irreducible?

6. Let $G = S_4$ and let $H = \{e, (12)(34), (13)(24), (14)(23)\}.$

a) Write down the six left cosets of H.

b) Let G act by left multiplication on these six right cosets, giving six-dimensional permutation module M. Find the matrices for the action of (12) and (123456). Is M irreducible? Explain.

c) Write down the matrices for (12)(34), (13)(24) and (14)(23). Explain your answer.