Math 464/564 Fall 2017 Homework Number 2- Due 9/12/17

1. The dihedral group D_{8} acts on \mathbb{R}^{2} naturally, where r acts as a 90 degree counterclockwise rotation and s acts as a reflection across the line $y=x$. Write the matrices for r and s in the standard basis.
a) Explain geometrically why this representation is irreducible over \mathbb{R}.
b) Is the same true over \mathbb{C} ? Explain.
2. Give an example if an infinite group G, different from the one in the book, and a finite-dimensional $\mathbb{C} G$ module where Maschke's Theorem fails.
3. Page $48 \# 1$.
4. Page $49 \# 6$.
5. (James-Liebeck p. 52) Define permutations $a, b, c \in S_{6}$ by:

$$
a=(123), b=(456), c=(23)(45)
$$

Let $G=\langle a, b, c\rangle$, the subgroup generated by $\{a, b, c\}$.
a) Check that

$$
\begin{aligned}
& a^{3}=b^{3}=c^{2}=1, a b=b a \\
& c^{-1} a c=a^{-1}, c^{-1} b c=b^{-1}
\end{aligned}
$$

Deduce that G has order 18 .
b) Supose that ϵ and μ are complex cube roots of unity. Prove that there is a representation ρ of G over \mathbb{C} such that:

$$
\rho(a)=\left(\begin{array}{cc}
\epsilon & 0 \\
0 & \epsilon^{-1}
\end{array}\right), \rho(b)=\left(\begin{array}{cc}
\mu & 0 \\
0 & \mu^{-1}
\end{array}\right), \rho(c)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

For which values of ϵ, μ is ρ faithful? For which values is it irreducible?
6. Let $G=S_{4}$ and let $H=\{e,(12)(34),(13)(24),(14)(23)\}$.
a) Write down the six left cosets of H.
b) Let G act by left multiplication on these six right cosets, giving six-dimensional permutation module M. Find the matrices for the action of (12) and (123456). Is M irreducible? Explain.
c) Write down the matrices for $(12)(34),(13)(24)$ and (14)(23). Explain your answer.

