Math 464/564 Fall 2017 Homework Number 10- Due Tuesday 11/21/17

Let $A=\left(a_{i j}\right)_{i, j \geq 1}$ be an integer matrix with finitely many nonzero entries. Suppose A has row and column sums:

$$
r_{i}=\sum_{j} a_{i j}, c_{j}=\sum_{i} a_{i j} .
$$

Define the row sum vector by $\operatorname{row}(A)=\left(r_{1}, r_{2}, \ldots\right)$ and the column sum vector by $\operatorname{col}(A)=\left(c_{1}, c_{2}, \ldots\right)$. Say A is a $(0,1)$ matrix if all entries are 0 or 1 .

1. Consider the expansion of the e_{λ} in terms of the basis of monomial symmetric functions:

$$
e_{\lambda}=\sum_{\mu \vdash n} M_{\lambda \mu} m_{\mu} .
$$

Prove that $M_{\lambda \mu}$ is the number of $(0,1)$ matrices $A=\left(a_{i j}\right)$ satisfying row $A=\lambda$ and $\operatorname{col}(A)=\mu$. In particular then $M_{\lambda \mu}$ is zero unless λ and μ partition the same integer.
Hint: These are symmetric functions so $M_{\lambda \mu}$ is just the coefficient of x^{μ} in e_{λ}.
2. Let $m_{\lambda}(x)$ and $m_{\mu}(y)$ denote monomial symmetric functions in sets of variables $\left(x_{1}, x_{2}, \ldots\right)$ and $\left(y_{1}, y_{2}, \ldots\right)$. Prove:

$$
\prod_{i, j}\left(1+x_{i} y_{j}\right)=\sum_{\lambda, \mu} M_{\lambda \mu} m_{\lambda}(x) m_{\mu}(y)
$$

where λ and μ range over all partitions. It suffices to take $|\lambda|=|\mu|$ as otherwise $M_{\lambda \mu}$ is zero by the previous problem.
3. Repeat Exercise 1 except for $N_{\lambda \mu}$ where:

$$
h_{\lambda}=\sum_{\mu \vdash n} N_{\lambda \mu} m_{\mu} .
$$

That is, express $N_{\lambda \mu}$ in terms of matrices with a given property.
4. As is in Problem 2 show that:

$$
\prod_{i, j}\left(1-x_{i} y_{j}\right)^{-1}=\sum_{\lambda, \mu} N_{\lambda \mu} m_{\lambda}(x) m_{\mu}(y) .
$$

5. Expand the power series $\prod_{i \geq 1}\left(1+x_{i}+x_{i}^{2}\right)$ in terms of elementary symmetric functions. λ
