Math 464/564 Fall 2017 Homework Number 10- Due Tuesday 11/21/17

Let $A = (a_{ij})_{i,j \ge 1}$ be an integer matrix with finitely many nonzero entries. Suppose A has row and column sums:

$$r_i = \sum_j a_{ij}, c_j = \sum_i a_{ij}.$$

Define the row sum vector by $row(A) = (r_1, r_2, ...)$ and the column sum vector by $col(A) = (c_1, c_2, ...)$. Say A is a (0, 1) matrix if all entries are 0 or 1.

1. Consider the expansion of the e_{λ} in terms of the basis of monomial symmetric functions:

$$e_{\lambda} = \sum_{\mu \vdash n} M_{\lambda \mu} m_{\mu}.$$

Prove that $M_{\lambda\mu}$ is the number of (0,1) matrices $A = (a_{ij})$ satisfying row $A = \lambda$ and $col(A) = \mu$. In particular then $M_{\lambda\mu}$ is zero unless λ and μ partition the same integer.

Hint: These are symmetric functions so $M_{\lambda\mu}$ is just the coefficient of x^{μ} in e_{λ} .

2. Let $m_{\lambda}(x)$ and $m_{\mu}(y)$ denote monomial symmetric functions in sets of variables $(x_1, x_2, ...)$ and $(y_1, y_2, ...)$. Prove:

$$\prod_{i,j} (1 + x_i y_j) = \sum_{\lambda,\mu} M_{\lambda\mu} m_{\lambda}(x) m_{\mu}(y)$$

where λ and μ range over all partitions. It suffices to take $|\lambda| = |\mu|$ as otherwise $M_{\lambda\mu}$ is zero by the previous problem.

3. Repeat Exercise 1 except for $N_{\lambda\mu}$ where:

$$h_{\lambda} = \sum_{\mu \vdash n} N_{\lambda \mu} m_{\mu}.$$

That is, express $N_{\lambda\mu}$ in terms of matrices with a given property.

4. As is in Problem 2 show that:

$$\prod_{i,j} (1 - x_i y_j)^{-1} = \sum_{\lambda,\mu} N_{\lambda\mu} m_\lambda(x) m_\mu(y).$$

5. Expand the power series $\prod_{i\geq 1}(1+x_i+x_i^2)$ in terms of elementary symmetric functions. λ