Math 464/564 Fall 2017 Homework Number 1- Due 9/5/17

1. Let $\sigma = (1, 6, 2, 4)(3, 7, 8)(5)$ and $\tau = (1, 4, 6, 8)(3, 5)(2, 7)$ be permutations in S_8 .

- **a)** Calculate $\sigma\tau$, $\tau\sigma$, and $\tau^{-1}\sigma\tau$.
- **b)** Calculate the order of σ and τ .
- c) What is the largest possible order of a permutation in S_{10} ? Explain.

2.

a) Consider σ given in two-line notation by:

Write σ in disjoint cycle notation.

b) Let $\tau = (12)(34)(5,6)(7,8,9)(10,11,12)(13,14,15,16)$. How many ways are there to write the same permutation τ in the form (??)(??)(??)(???)(???)(???). For example

$$\tau = (65)(34)(21)(8,9,7)(12,10,11)(15,16,13,14).$$

3. Let V be the vector space of polynomials with real coefficients and degree at most 3. So $\{1, x, x^2, x^3\}$ is a basis of V. Let $\beta = \{v_1 = 1 + x, v_2 = 1 - x, v_3 = x + x^2 + x^3, v_4 = x^2 + 2x^3.\}$

a) Prove that β is also a basis of V.

b) Consider the map T that takes a polynomial p(x) to its derivative p'(x). Prove that T is a linear map from V to V.

c) Find the matrix of T with respect to the basis β .

4. Let G be a group and $g \in G$. The *centralizer* of g, denoted $C_G(g)$ is the set of elements which commute with g. That is:

$$C_G(g) = \{ x \in G \mid xg = gx \}$$

- **a)** Prove that $C_G(g)$ is a subgroup of G.
- **b)** Let $G = S_4$ and $\sigma = (12)(34)$. Determine $C_G(\sigma)$.
- c) Let $G = GL_2(\mathbb{R})$ and $g = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Determine $C_G(g)$.

5. Let $G = S_4$ and let $H = \langle (123) \rangle$ be the subgroup generated by (123). Compute the left cosets of H in G.

6. Recall that for groups G and H a map $\psi : G \to H$ is a homomorphism if $\psi(g_1g_2) = \psi(g_1)\psi(g_2)$ for all $g_1, g_2 \in G$. Recall that the kernel ker $\psi = \{g \in G \mid \psi(g) = e\}$. Prove that the kernel is a subgroup of G.