Math 464/564 Fall 2017 Homework Number 1- Due 9/5/17

1. Let $\sigma=(1,6,2,4)(3,7,8)(5)$ and $\tau=(1,4,6,8)(3,5)(2,7)$ be permutations in S_{8}.
a) Calculate $\sigma \tau, \tau \sigma$, and $\tau^{-1} \sigma \tau$.
b) Calculate the order of σ and τ.
c) What is the largest possible order of a permutation in S_{10} ? Explain.
2.

a) Consider σ given in two-line notation by:

$$
\sigma=\left(\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
3 & 9 & 5 & 6 & 1 & 10 & 4 & 7 & 2 & 8
\end{array}\right)
$$

Write σ in disjoint cycle notation.
b) Let $\tau=(12)(34)(5,6)(7,8,9)(10,11,12)(13,14,15,16)$. How many ways are there to write the same permutation τ in the form (??)(??)(??)(???)(???)(????). For example

$$
\tau=(65)(34)(21)(8,9,7)(12,10,11)(15,16,13,14)
$$

3. Let V be the vector space of polynomials with real coefficients and degree at most 3 . So $\left\{1, x, x^{2}, x^{3}\right\}$ is a basis of V. Let $\beta=\left\{v_{1}=1+x, v_{2}=1-x, v_{3}=x+x^{2}+x^{3}, v_{4}=x^{2}+2 x^{3}\right.$. $\}$
a) Prove that β is also a basis of V.
b) Consider the map T that takes a polynomial $p(x)$ to its derivative $p^{\prime}(x)$. Prove that T is a linear map from V to V.
c) Find the matrix of T with respect to the basis β.
4. Let G be a group and $g \in G$. The centralizer of g, denoted $C_{G}(g)$ is the set of elements which commute with g. That is:

$$
C_{G}(g)=\{x \in G \mid x g=g x\} .
$$

a) Prove that $C_{G}(g)$ is a subgroup of G.
b) Let $G=S_{4}$ and $\sigma=(12)(34)$. Determine $C_{G}(\sigma)$.
c) Let $G=G L_{2}(\mathbb{R})$ and $g=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. Determine $C_{G}(g)$.
5. Let $G=S_{4}$ and let $H=\langle(123)\rangle$ be the subgroup generated by (123). Compute the left cosets of H in G.
6. Recall that for groups G and H a map $\psi: G \rightarrow H$ is a homomorphism if $\psi\left(g_{1} g_{2}\right)=\psi\left(g_{1}\right) \psi\left(g_{2}\right)$ for all $g_{1}, g_{2} \in G$. Recall that the kernel $\operatorname{ker} \psi=\{g \in G \mid \psi(g)=e\}$. Prove that the kernel is a subgroup of G.

