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We make a systematic study of a new concept in the theory of jeu-de-taquin, which we call dual 
equivalence. Using this, we prove a conjecture of Proctor establishing a bijection between 

standard tableaux of ‘shifted staircase’ shape and reduced expressions for the longest element in 

the Coxeter group B,. We also get a new and more illuminating proof of the analogous 

theorem, due to Greene and Edelman, for the Coxeter group A,, and arrive at yet one more 

theorem of a similar type. We explain some symmetric functions associated to reduced 

expressions by Stanley and prove his conjecture that one of these for B, is the Schur function s, 

for L an l-by-l square. We classify shifted and unshifted shapes for which the total promotion 
operator has special properties; in one case this proves another conjecture of Stanley. We 

determine the previously unknown ‘dual Knuth relations’ for the shifted Schensted 

correspondence. 

1. Introduction; notational conventions 

The immediate purpose of this article is to prove a conjecture of Proctor 

establishing a bijection between reduced expresions for the longest element wB, of 

the Coxeter group of type B, and standard tableaux of ‘shifted staircase’ shape 

(21- 1, 21- 3, . . . , 1). This generalizes a theorem of Greene and Edelman for the 

Coxeter group of type AI and the unshifted staircase shape (I, I - 1, . . . , 1). As it 

turns out, we get a new and simpler proof of the Greene-Edelman theorem and 

yet another theorem of the same type which had not even been conjectured 

before. We show how these bijections explain the mysterious symmetric functions 

used by Stanley to study the case A, and prove a conjecture of his concerning one 

of these functions for BI. 
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Our real purpose, however, is not only to obtain the above results but to 

develop a heretofore missing but crucial tool in the theory of jeu-de-taquin and 

the Schensted correspondence. This tool is a relation on tableaux we call dual 
equivalence because it is precisely dual in the sense of the Schensted correspon- 

dence to the relation of jeu-de-taquin equivalence. In particular, for permuta- 

tions, it captures the property of having the same ‘recording’ tableau. However, it 

is defined intrinsically for any tableaux, and has a marvelous number of 

equivalent alternative characterizations. 

Once dual equivalence is understood, all manner of things in addition to the 

Proctor conjecture and Greene-Edelman theorem follow quite naturally, of 

which we discuss a number here. They include the following. 

(1) The fundamental theorems of jeu-de-taquin, which can now be given 

purely jeu-de-taquin proofs which are unified for the shifted and unshifted cases 

and do not require the use of any extraneous considerations such as the Greene 

invariant or detailed analysis of the Schensted ‘bumping’ process. 

(2) Dual ‘Knuth relations’. These can be determined immediately, again 

without the Greene invariant. In the shifted case, they were not known before. 

(3) Shapes for which total promotion has special properties. All the known 

cases are covered by the theory, as well as a case that had only been conjectured. 

We deal in this paper only with shifted and unshifted standard tableaux. Thus 

for our purposes a tableau T is an order-preserving bijective function from a 

shape shT=A to the set (1,. . . , n = IAl}, where a shape is a segment in the 

partial order 2 X Z (the plane) or {(i, j) E Z X Z 1 i <j} (the shifted plane). We 

view the planes as ordered matrix-style with i increasing downward and j to the 

right, so the shifted plane lies on and above the diagonal in the plane. All figures 

and all such terminology as ‘above’, ‘below’, ‘left’, ‘right’ use this matrix 

convention. The elements of the planes are called cells. 

A normal shape is one with a unique upper-left corner, which in the shifted 

case is required to lie on the diagonal. A normal shape can be specified by giving 

its row lengths as a partition, or in the shifted case, a strict partition, e.g., (3,2,1) 
indicates a triangular shape with six cells. 

One operates on tableaux by jeu-de-taquin slides [9]. Say that a shape p extends 
A if il U p is a shape containing A. and p as complementary initial and final 

segments. If {c} extends sh T, one performs a forward slide on T into the cell c by 

moving the greater (or only) of the entries of T to c’s left and above c into the cell 

c, then continuing in like fashion with the cell just vacated, until one reaches an 

upper-left-most cell of T U {c} where one stops. This last cell is said to be vacated 
by the slide. If sh T extends {c}, one performs a reverse slide on T into c by the 

opposite process. 

Tableaux that can be obtained each from the other by slides are jeu-de-taquin 
equivalent. Equivalence can be tested using the Schensted correspondence: let the 

reading word w = w(T) be the permutation consisting of the entries of T read 

left-to-right from bottom to top, one row at a time. We denote the Schensted 
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insertion and ‘recording’ tableaux for w by 0 + w and R: 0 + w. In the shifted 

case there is a shifted Schensted correspondence due to Worley and Sagan [7, 121 

whose insertion and recording tableaux we denote 7+-w and R: y +-w. Then 

0 t w (or p + w) is the unique tableau of normal shape equivalent to T. 

A sequence of cells (c,, . . . , c,) describes a sequence of slides for T if it is 

meaningful to form T = T,, T,, . . . , 7; in which each ?; is the result of a slide on 

?;_, into the cell Cj- In particular, if X is a tableau such that sh X extends sh T, 

then the cells of X taken in the order of the entries of X form a sequence of 

forward slides for T. The result of applying this sequence we denote lx(T). 

Likewise, if sh T extends sh X we form lx(T) by reverse slides into the cells of X, 

taken in reverse order. The sequence of cells vacated as we form lx(T) describes 

a tableau which we denote V:lx(T); similarly we obtain V:jX(T). Evidently 

I”“~(~)(/~(T)) = T =jV:,~CTj~Y(T)). 
When, as above, we have tableaux such that p = sh X extends a = sh T we will 

sometimes write T U X to mean the tableau of shape A U p whose least ) TI entries 

form the tableau T and whose greatest (XI entries form X (up to a constant added 

to all entries). Similarly we have Y U T U X and like expressions. 

Both the plane and shifted plane have an order-reversing reflection sending 

(i,j) to (-j, -i). 0 perations, properties, or statements that correspond under 

this reflection will be referred to as ‘anti’. Thus a forward slide is the 

anti-operation of a reverse slide, and the two identities I”“~(~)(J,(T)) = T = 

I~,,Y~&~(T)) are one another’s anti-statements. 

2. Definition of dual equivalence and alternative formulations 

We now proceed to our key concept, an equivalence relation among tableaux 

of a given shape A. The definition we give here is just one of many possible 

characterizations of this relation. Other such characterizations are established in 

the propositions following the definition. 

Definition. Let S and T be tableaux. Suppose that every sequence (c,, . . . , ck) 

which is a sequence of slides for both S and T yields two taleaux of the same 

shape, when applied to S and T respectively. Then S and T are said to be dual 

equivalent, written S = T. 

In the definition, (c,, . . . , c,J is allowed to be the empty sequence; thus S = T 
entails that sh S = sh T. To see that dual equivalence is a genuine equivalence 

relation, note first that it is obviously reflexive and symmetric. If S = T then it is 

easy to see, by induction on the length of the sequence, that any sequence of 

slides for S is also a sequence of slides for T. Transitivity follows directly from this 

observation. 



82 M.D. Haiman 

The sequence (c,, . . . , ck) is allowed to involve both forward and reverse 

slides. Thus it is implicit in the definition that anti-dual equivalence is the same as 

dual equivalence. 

A warning to the reader is in order here about the shifted and unshifted 

version’s of dual equivalence: unshifted tableaux S and T may be dual equivalent, 

but not be when regarded as shifted tableaux. This is because slides are possible 

in the shifted plane which cannot be simulated in the unshifted one. 

Crucial to our study of dual equivalence in this section and to our applications 

in later sections will be the reduction of a general dual equivalence to a chain of 

especially simple ‘elementary’ ones. The reduction is based on the following 

simple observation. 

Lemma 2.1. Let A, u, and Y be shapes such that u extends il and Y extends A. U CL. 

Let X, Y, S, and T be tableaux with sh X = A, sh S = sh T = u, and sh Y = Y. Zf 
S=T, thenXUSUY=XUTUY. 

Proof. Consider the action of a forward slide, say into a cell c, on X U S U Y. Its 

effect is to first slide Y into the cell c, then slide S into the cell vacated by the 

slide on Y, and finally slide X into the cell vacated by this slide on S. This results 

in a tableaux X’ U S’ U Y’. If S = T, then any slide on T vacates the same cell as 

the corresponding slide on S. Therefore sliding X U T U Y into c yields a tableaux 

X’ U T’ U Y’, with the same X’, Y’ as before. Moreover, we will have S’ = T’, 

since they result from slides of S and T into the same cell. All we have just said 

applies, mutatis mutandis, to reverse slides as well. Thus applying a slide to 

X U S U Y and X U T U Y, we obtain two tableaux of the same shape which again 

conform to the hypotheses of the lemma, and by induction the same is true for 

any number of slides, which proves X U S U Y = X U T U Y. 0 

Let us now introduce a convention which will save on verbiage later. 

Definition. A miniature shape or tableau is one having m cells, where m = 3 in 

the context of the unshifted theory, and m = 4 in the shifted context. 

Proposition 2.2. Each dual equivalence class of miniature tableaux consists of 
either one or two elements. A miniature tableau T belongs to a two-element class if 
and only if its reading word belongs to list A below, for the unshifted case, or list B 
for the shifted case. In either case, the other tableau T’ dual equivalent to T differs 

from T by exchange of the entries x and y. In the lists, 1, 2, 3, 4 stand for the 
entries of the tableau in increasing order. 

List A: xly x3y 

List B: 1x2~ x12y 1x4~ xl4y 4x1~ x41y 4x3~ x43y 
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Proof. For each entry on list A, write down all pairs of tableaux of common 
shape whose reading words match the entry. Then verify that any slide on such a 
pair yields another such pair-a trivial but tedious exercise which we leave for the 
skeptical reader. Likewise for list B, using shifted tableaux. This proves that the 
members of each such pair are dual equivalent, as claimed. 

Next suppose S and T are distinct dual equivalent miniature tableaux, say of 
shape il. Choose any tableau X such that sh X is normal and A. extends sh X. Then 
S’ =jx(S) and T’ =jX(T) result from the same slide sequence applied to S and T 
respectively, hence have the same shape ~1, which is normal. Furthermore, S = T 
implies V:lx(S) = V:jX(T) = Y, say: Thus S =ly(S’) and T = jv(T'). In par- 
ticular S’ # T’. 

Now S’ and T’, as distinct miniature tableaux of the same normal shape, can 
only be 

in the unshifted case, or 

in the shifted case. Thus they form a pair whose reading words match an entry in 
list A or B, in fact the entry xly from A or xl2y from B. Since we have already 
seen that any slide carries such a pair into another such pair, S and T are such a 
pair, which proves the proposition. 0 

Definition. An elementary dual equivalence is one of the form X U S U Y = X U 
T U Y as in Lemma 2.1, where S = T is a dual equivalence of distinct miniature 
tableaux. 

As an aid to understanding we pause to summarize in informal language the 
content of this definition, taken together with Proposition 2.2. An unshifted 
elementary dual equivalence amounts to an exchange in a tableau of consecutive 
entries x and y that are separated in the cross-order (the order ascending upward 
and to the right) by an entry w consecutive with {x, y}. A shifted elementary dual 
equivalence also amounts to such an exchange, but where additionally w is 
preceded in the cross-order by an entry ZJ consecutive with {w, x, y}. 

We are now prepared to reduce all dual equivalences to elementary ones. We 
begin with another simple lemma, then use it to proceed from the special case of 
normal-shape tableaux to the general case. 
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Lemma 2.3. Let U = V be an elementary dual equivalence. Then applying any 
slide to U and V respectively yields U’ and V’ such that U’ = V’ is elementary. 

Proof. This follows immediately from the description given in the proof of 

Lemma 2.1 of the action of a slide on the tableaux U = X U S U Y and 

V=XUTUY. q 

Proposition 2.4. Let S and T be any two tableaux of the same normal shape A. 
Then S and T are connected by a chain of elementary dual equivalences, 

Proof. We proceed by induction on lA1. The case A = 0 is trivial. If (Al = n > 0, we 
can assume by induction that for any lower-right corner cell c in A, there are 

elementary dual equivalences connecting all tableaux having entry n in cell c. 

In particular, if there is only one such c, we are done. 

Otherwise, let c and c’ be two lower-right corner cells. It suffices to prove that 

there exist tableaux S and T of shape A having entry n in cells c and c’ 

respectively, such that S = T is an elementary dual equivalence. 

In the unshifted case, choose from among all cells lying strictly between c and 

c’ in the cross-order a lower-right-most one c”. Such a cell clearly exists in a 

normal shape. Put n - 2 in c”, n and n - 1 in c and c’ in either order, and 

l,..., n - 3 in the remaining cells arbitrarily to form S and T. The exchange of 

n - 1 and n is then an elementary dual equivalence S = T. 
In the shifted case, proceed just as above, but choose also a lower-right-most 

cell c”’ preceding c” in the cross-order. Again the fact that A. is a normal 

shape-here a normal shifted shape-guarantees this cell’s existence. Filling in 

the cells as above, with now also n - 3 in c”‘, we get a shifted elementary dual 

equivalence S = T. 0 

Corollary 2.5. All tableaux of any given normal shape 2. are dual equivalent. 

Theorem 2.6. Tableaux S and T are dual equivalent 
connected by a chain of elementary dual equivalences. 

if and only if they are 

Proof. The ‘if’ part is obvious. 

For ‘only if’, assume S = T. Then sh S = sh T = A, say; let X be a tableau of 

normal shape such that A extends shX. As in the proof of Proposition 2.2, let 

S’ =lx(S), T’ =lX(T), and Y = V:jx(S) = V:jx(T). 

By Proposition 2.4, there is a chain S’ = R; = R; = - - . = R; = T’ of elementary 

dual equivalences connecting S’ and T’. By Lemma 2.3, S = R. = RI =. . . = 

Rk = T is a chain of elementary dual equivalences, where Ri =lr(RI) for each i. 
0 
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In the remainder of this section, we develop several alternative properties 

characterizing the relation of dual equivalence. Readers wishing to move quickly 

to applications may stop after Corollary 2.9, which is the last result used in 

subsequent sections, except Section 3, which uses Theorem 2.12. The remaining 

material is included in order to explicate the relationship between dual equiv- 

alence and the foundations of jeu-de-taquin theory. This material also contains 

the reason for the name ‘dual equivalence.’ 

Lemma 2.7. Let S and T be tableaux such that sh T extends sh S. Then 
V:jT(S) =js(T) and V:lS(T) =lT(S). 

Proof. Let P stand for the poset sh S U sh T; thus S U T describes an order- 

preserving bijective function @ : P+ (1, . . . , n}, where n = IP(. If now 8 is any 

such bijection, define ri,i+rO to be either 8, in case O-‘(i) < 8-‘(i + l), or else 

(i, i + 1) 0 8, otherwise. It is plain that ~~,~+r 6 is an order-preserving bijection from 

P to (1,. . . , n}. 
Let k = (sh Sl, I= lsh T(. By interpreting the definition of jeu-de-taquin slides 

appropriately in terms of the operations Ti,i+l, we see that 

(V:AS)) UAS) = rr,r+lr[+l.l+2. . . rn-l,n 

Likewise, 

. . . r2,3r3,4. . . rk+l,k+2 

. . . r1.2r2,3 . . . Ik,k+l 6 

~~(7) U (V:jS(T)) = r~,l+lr~-l.l. . . rl,, 

. . . rn-2.n-lrn-3,n-2. . . rk-1.k 

. . . rn-l,nrn-2,n-l . . . rk.k+l 6 

NOW ri,i+l and rj,j+l commute if Ii - jl > 1. These commutation relations imply 

that the preceding two expressions are equal, proving the lemma. Cl 

It should be noted that the concepts of shapes, tableaux, and slides have 

natural interpretations with any poset in place of the plane or the shifted plane. 

Lemma 2.7 remains valid in this more general setting, as is clear from the proof 

just given. 

Corollary 2.8. Let S, T and X be tableaux such that S = T and sh S = sh T extends 
sh X. Then is(X) = J*(X). In other words, dual equivalent slide sequences have 
the same effect on any tableaux X. Note that this applies to both forward and 
reverse slide sequences by the anti-statement of this corollary. 

Proof. By Lemma 2.7, js(X) = V :1”(S) and lT(X) = V :I~( T). It follows directly 

from the definition of dual equivalence that S = T implies V:lx(S) = 

V:lX(T). q 
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Corollary 2.9. With the hypotheses of Corollary 2.8, V : is(X) = V : lT(X). 

Proof. By Lemma 2.7, the conclusion is the same as lx(S) = lx(T), and this is 
clear from the definition of dual equivalence. 0 

Theorem 2.10. Let S and T be tableaux and suppose sh S = sh T = A. Then the 
following conditions are equivalent: 

(1) S-L T. 
(2) V:lx(S) = V:lX(T) for all X such that A extends sh X. 
(3) V:lx(S) =V:lX(T) f or some X such that A extends shX and shX is 

normal. 
(4) V : lx(S) = V : JX( T) for all X such that sh X extends A. 

(5) V:Jx(S) = V:Jx(T) f or some X such that sh X extends A and shX k 
anti-normal. 

(6) is(X) = ]r(X) for all X such that A extends sh X. 

(7) Is(X) = Ix(X) f or some X such that A extends sh X and sh X is normal. 
(8) is(X) = ]r(X) for all X such that sh X extends A. 

(9) J’(X) =Jr(X) f or some X such that shX extends A and shX is anti- 

normal. 
(10) There exist tableaux S’ and T’ of the same normal shape u and a tableau Y 

of shape extending u such that S = jy(S’) and T = jy(T’). 

(11) There exist tableaux S’ and T’ of the same anti-normal shape u and a 
tableau Y for which u extends sh Y such that S = J’(S’) and T = lY(T’). 

Proof. (1) 3 (2) follows directly from the definition of dual equivlaence. (2) 3 
(3) is trivial. (3)+(10) follows by taking S’ = lx(S), T’ = lx(T), and Y = 
V:lx(S) =V:lX(T). (lo)+(l) b ecause of Corollary 2.5. (6) and (7) are equiv- 
alent to (2) and (3) by Lemma 2.7. 

Finally, (4), (5), (8), (9), and (11) are the anti-statements of (2), (3), (6), (7), 
and (lo), so they are all equivalent to (1) as (1) is its own anti-statement. 0 

There is one more, rather deeper, characterization of dual equivalence, this 
time in terms of the reading words of the tableaux. To explain this, it is 
convenient to identify words with permutation tableaux in the manner introduced 
by Schtitzenberger. Namely, a permutation tableau is one whose shape is an 
anti-chain. Any permutation can be the reading word of such a tableau and so we 
use the tableau to represent the word. 

Given a shape A, it is easy to describe a sequence of slides that carries any 
tableau T of shape A to its reading word (as a permutation tableau), by first 
separating the rows of T, then spreading each row into individual cells. The 
action of such a slide sequence does not depend on the actual contents of T; thus 
the slides vacate cells in a fixed sequence that is the same for all T. The reverse of 
this last sequence is then a sequence of slides that carries the reading words back 
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to the corresponding tableaux. Now if two tableaux are dual equivalent, then so 
are the results of any slide sequence applied to the two tableaux. In the present 
context this proves the following. 

Lemma 2.11. Tableaux S and T of the same shape A are dual equivalent if and 

only if their reading words (regarded as permutation tableaux) are. 

Now we shall determine when the two reading words are dual equivalent. The 
result, incidentally, explains how to compute lists A and B of Proposition 2.2, 
which were introduced there by fiat. 

Theorem 2.12. Permutation tableaux S and T are dual equivalent if and only if 

R:O+S=R:n+T(orR:y+S=R:\+Tintheshiftedtheory). 

Proof. We prove ‘only if’ first. For the unshifted case, suppose S = T. R :n +S 
records the shape sequence A, c . . . c A,, where & = sh cl+ (si . . . sk) (here we 
identify S with the word s1 * - * s,). Since S = T, a sequence of slides that brings 

si *. . sk to normal shape and leaves the other n - k cells put will bring tl * - . tk to 
the same normal shape A,. Hence R : q + T = R : 0 + S. 

For the shifted case, the same argument shows that R: 7 cS and R: 7J c T 

have the entries 1, . . . , n in the same cells. However, in addition, those 
off-diagonal entries representing shifted Schensted insertions whose ‘bump paths’ 
contain a diagonal cell are circled. We must verify that k is circled in R : Yl t S if 
and only if k is circled in R : Tj t T. At this point we simply state the relevant 
facts, presuming that the reader who is familiar with the simulation of shifted 
insertion by slides can check them easily. 

Put s, = Yjt(s, . . . Sk) and consider the insertion Of sk+i into Sk, i.e., the 
formation of \+(Sk@++i) by slides. sk+l is initially placed at the end of an 
empty row directly above the top row of Sk. If we number the empty cells in this 
row l,..., m, then slides are performed into these cells in the order m, m - 

1 
row 

. * > 1. Let d be the number of diagonal cells in Sk. The diagonal cell in the last 
of Sk will be: 

(1) vacated by the slide into cell d + 1 of the empty row, in case the bump path 
for insertion of &+i does not touch the diagonal, or 

(2) vacated by the slide into cell d of the empty row, in case the bump path 
touches the diagonal and continues to the right through at least one more column, 
or 

(3) not vacated at all, in case the bump path touches the diagonal and ends 
there. 

If S = T, then the slides forming q + (Sk $ sk+i) will vacate the same cells as 
those forming qt(Tk @ tk+l), so we will have the same case (l), (2) or (3) for 
each tableau. But the circling of entry k + 1 is determined by the case (circled in 
case (2), otherwise not), and this means R : YJ +S and R:T+T have the same 
entries circled. 
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Finally we prove the ‘if’ direction. Let S be a permutation and let A = sh 0 t S 

(or sh O+S). Fix a tableau X describing a slide sequence carrying S into the 

shape A, i.e., any tableau of normal shape such that sh S extends sh X. Put 

Y = V:lx(S). We will have the same A. and Y for any permutation S’ such that 

.,” = S, and since all tableaux of the normal shape 3L are dual equivalent, we see 

that lx and jv define inverse bijections between the dual equivalence class of S 

and the set of tableaux of shape h. By the Schensted correspondence, lx (which 

computes 0 t S or 7 +S) also defines a bijection from the set R(S) of S’ with 

R:n+S’ = R:u+S (or R:ntS’ = R:n+S) to the set of tableaux of shape 

A. By the ‘only if’ part of the theorem, R(S) contains the dual equivalence class of 

S, and so we see that the two sets must be equal. 0 

It is this last theorem that justifies the term ‘dual equivalence’. The equivalence 

to which dual equivalence is ‘dual’ is jeu-de-taquin equivalence, that is, the 

relation of being connected by a sequence of slides. Two tableaux are jeu-de- 
taquin equivalent if and only if their reading words have the same Schensted 

insertion tableau. Our theorem says that, ‘dually,’ dual equivalence reflects the 

same concept for the recording tableaux. 

Abstractly, the Schensted insertion tableau for a permutation w is merely a 

representative of its jeu-de-taquin equivalence class, and the recording tableau a 

symbol for its dual equivalence class. We define two permutations to be shape 
equivalent if they are jeu-de-taquin equivalent to tableaux of the same normal 

shape. Then the Schensted correspondence amounts to this: each permutation is 

determined by its equivalence class and its dual equivalence class; and an 

equivalence class and dual equivalence class both contain some permutation if 

and only if they are contained in the same shape class. 

The advantage of this viewpoint is that one can describe a ‘Schensted 

correspondence’ not only for permutations, but for tableaux of any given shape A, 

using dual equivalence classes in place of recording tableaux. 

Theorem 2.13. Let A be a shape and let Th be the set of tableaux of shape A. Then 
within each shape class, each jeu-de-taquin equivalence class meets each dual 
equivalence class in a unique T E Th. 

Proof. Fix a tableau X such that sh X is normal and A extends sh X. We are to 

show that if S, U E TA belong to the same shape class then there is a unique T E Tn 
such that lx(T) = lx(S) and T = U. Let Y = V:lx(U). We have inverse 

bijections lx and lu between the dual equivalence class of U and the set of tableau 

of shape y = shlx(U) = shlx(S). Hence T =ly(jx(S)) is the unique tableaux 

with the properties we require. 0 

We close this section with some remarks on the relevance of dual equivalence 

to the foundations of jeu-de-taquin theory. There are two ‘fundamental theorems’ 
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of jeu-de-taquin, due to Schiitzenber for the unshifted theory and to Worley and 

Sagan for the shifted version. 

The first fundamental theorem is that the result of a sequence of slides carrying 

a tableau T to normal shape depends only on T and not on the choice of 

sequence. The resulting tableau is what we call l-J+- T or YJ + T. In view of 

Corollary 2.8, which depends only on the very general Lemma 2.7, this first 

fundamental theorem is nothing but the fact (Corollary 2.5) that all tableaux of a 

given normal shape are dual equivalent, which we proved by direct elementary 

methods. Thus we have given here a new proof of the first fundamental theorem, 

which may be in some ways more illuminating than previous ones. 

The second fundamental theorem of jeu-de-taquin is that the number of 

tableaux of shape A going over under jeu-de-taquin to a given tableau T of normal 

shape ~1 depends only on A and p and not on T. The applications of jeu-de-taquin 
to the theory of symmetric functions are based on this theorem, which is normally 

proved using an operation known as evacuation. In our context, the second 

fundamental theorem is merely a corollary to Theorem 2.13, and we get the 

additional information that the number in question equals the number of dual 

equivalence classes contained in the shape class ~1 in T*. 
The following proposition characterizes those shapes which can replace normal 

shapes in the first fundamental theorem. Although it is not hard to prove, we 

omit the proof as it is somewhat off our central purpose. 

Proposition 2.14. An unshifted shape ?, has the property that all tableaux of shape 
il are dual equivalent if and only if il is either normal or anti-normal. A shifted 
shape A has this property if and only if il is either normal, anti-normal, or any 
shifted shape having a unique upper-left and a unique lower-right corner. 

3. Dual Kuuth relations for shifted insertion 

Knuth relations are certain elementary transformations on a permutation that 

preserve the corresponding Schensted insertion or recording tableau. In the cases 

of the unshifted insertion and recording tableaux and the shifted insertion 

tableau, there are theorems, due to Knuth [4] in the unshifted theory and to 

Worley [12] and Sagan [7] in the shifted theory, saying that two permutations 

have the same insertion or recording tableau if and only if they are connected by 

a chain of the appropriate Knuth relations. 

We now use dual equivalence to deduce the Knuth relations (called dual Knuth 

relations) for preservation of the recording tableau. In the shifted theory, this 

result is new. 

Theorem 3.1. Let v and w be permutations. Interpret entries from lists A and B of 
Proposition 2.2 as dual Knuth relations as follows: if the list entry occurs as a 
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subsequence (not necessarily adjacent) of v, where 1, 2, 3, 4 stand for any 
consecutive numbers m + 1, m + 2, m + 3, m + 4, the corresponding dual Knuth 
relation const&s of exchanging x and y. Then R : [7 t v = R : 0 t w if and only if 
v and w are connected by dual Knuth relations from list A. R : FJ t v = R : 7 c-w 

if and only if v and w are connected by dual Knuth relations from list B. 

Proof. Theorem 2.12 shows that v and w have the same recording tableau if and 
only if they are dual equivalent (regarded as permutation tableaux). This happens 
if and only if they are connected by elementary dual equivalences, and for 
permutation tableaux, these amount to the above dual Knuth relations. 0 

In [2] it is shown that R: V, + w is the insertion tableau YF w-l for a process 
of shifted mixed insertion defined there. Reinterpreting the dual Knuth relations 
for their effect on the inverse of a permutation, we have the following. 

Corollary 3.2. Let v and w be permutations. Then yt”v = YJt” w if and only if v 
and w are connected by Knuth relations of the following forms: 

acbd - cabd, bacd - bead, dacb - dcab, dbac - dbca, 

where a, b, c, d form a subsequence of adjacent numbers, a <b < c, and d < b. 

4. Promotion and generalized staircases 

In this section we apply dual equivalence to the study of the promotion 
operation on tableaux. Especially, we are interested in shapes for which tableau 
promotion ‘commutes’ with elementary dual equivalences in an appropriate 
sense. For these shapes, properties of promotion which hold for one tableau can 
be carried over to dual equivalent ones. 

The shapes to which our reasoning applies can be readily classified. We call 
them generalized staircases. They turn out to be precisely those shapes about 
which it is known or conjectured that the operation of total promotion is the 
identity (or in one case, the transpose). Consequently we arrive at a new unified 
proof of this property for the known shapes and for the conjectured ones. 

The results of this section also form the basis of our study of the Green- 
Edelman correspondence and Proctor’s conjecture in Section 5. 

Definition (Schtitzenberger [S]). Let T be a tableau and let n = (sh TI. The 
promotion step operation p is defined on T as follows: delete the entry n from its 
cell in T; perform a slide into that cell on the rest of T; and fill the cell vacated by 
the slide with a new least entry 0. Then add 1 to all entries to regain the standard 
1 > . . . , n. The result is p(T). Note that p is an invertible operation and that p-l 
is the anti-operation of p. The operation p” is called total promotion. 
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We will also need the following related operation. 

Definition. Let T be as before. The exhaustion operation e is defined on T as 
follows: Delete entry n and perform a slide into its cell. Then do the same to 
entriesn-1, n-2,..., 1 in succession, so that every cell in sh T is ultimately 
vacated. Then e(T) is the tableau of shape sh T whose entries record the order in 
which cells were vacated by the above slides. 

Exhaustion e and its anti-operation e* are involutions (see [S]). Like Lemma 

2.7, this is a general statement true of posets that are not necessarily tableau 
shapes. In fact, it follows from Lemma 2.7, applied to the poset P = T U S where 
S is a chain of 1 T 1 elements all greater than every element of T. 

It is not hard to deduce from the definitions that the total promotion operator 
p” is equal to e *-lo e = e* oe. For a given shape A, then, the properties p” = id 
and e=e* are equivalent. For a normal shape, e* reduces to the standard 
evacuation operation from the Schiitzenberger and Worley theories of jeu-de- 

taquin. 

Definition. A shape A is a brick if for all tableaux X, Y of shape A, 
X = Y + e(X) = e(Y). Otherwise, A is a stone. 

Proposition 4.1. The unshifted miniature bricks are these: 

““EFl@ 
The other unshifted miniature shapes are stones. The shifted miniature bricks are 
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The other shifted miniature shapes are stones. Here the diagrams represent shapes 
up to isomorphism as posets, so that for instance the last shape in the shifted table 
star&s for any permutation shape, euen though the four cells might not be 

diagonally adjacent. 

Proof. For each shape on the lists it is routine to verify that e preserves dual 

equivalence. For each shape not on the lists, one easily finds counterexamples. 

The work can be simplified by noting that only two-element dual equivalence 

classes need be checked. 

For example, - 

is the only such dual equivalence class of its shape, and e exchanges these two 

tableaux, so this shape is a brick. 

On the other hand, 

but e carries these to nondual equivalent tableaux, so this shape is a stone. 

Note incidentally that normal shapes and permutation shapes are necessarily 

bricks. 0 

We can now describe a class of tableaux for which promotion and dual 

equivalence interact nicely. 

Definition. A generalized staircase is a rookwise-connected non-empty shape in 

which every miniature final segment is a brick and every miniature initial segment 

is an anti-brick. 

Note that although an anti-brick may be a stone (since e # e* in general), the 

preceding definition as a whole is anti-invariant, so an anti-generalized staircase is 

the same as a generalized staircase. 

Proposition 4.2. The unshifted generalized staircases are the following. 
(1) The staircase shape AI = (1, I- 1, . . . , 1) and its anti-shape A:, for 1~ 1. 

We have 

(2) The rectangle shape R,,, = (m, . . . , m) with 1 rows, for 1, m 2 1. We have 

lRr,,I = lm. 
The shifted generalized staircase are listed next. 
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(1) The ‘double staircase’ shape 

D,,,, = (I, I- 1, . . . , 1) + (m, m - 1, . . . , 1) = (I + m, I + m - 2, . . .) 

and its anti-shape D&,,, for I 2 1, 0 <rn c 1. We have 

lDt,,I = (‘; ‘) + (“; ‘>. 
(2) The trapezoid shape T,m = (m + 1 - 1, m + I - 3, . . . , m - I+ 1) and its 

anti-shape T&,,, form~l~l. Wehave IT,,l=lm. 
(3) The shape U, =A2, regarded as a shifted shape, and 17; = Al. 
(4) The shape U, = Rza2, regarded as a shifted shape. 
(5) The shifted shape lJ, = (3, 2) and its anti-shape Uz, 

Proof. First we check that these are generalized staircases. The Uj are trivial. The 

rest are either normal or anti-normal and it suffices to check the normal ones by 

anti-invariance. Their initial segments are normal, hence anti-bricks, so only final 

segments need be examined. For A, these are either permutations or are normal. 

For RI,, they are anti-normal. Final segments of T,,, can be the first, second, 

seventh, ninth, or any of the last four entries in the table of shifted bricks in 

Proposition 4.1, and no others. Final segments of D,,, can be any of the first, 

third, fourth, sixth, eighth, tenth, eleventh, or any of the last three entries, and 

no others. 

Now we establish that these are the only possibilities. Let A be a generalized 

staircase. Let c be the upper-right-most cell in A. We can assume ?, is at least 

miniature, since all smaller shapes are on the list. 

Suppose the cell to the left of c is in A. Then A has a unique upper-left corner 

cell. Otherwise it would have 

E!= 

as an initial segment, which is an anti-stone, and thus forbidden, in the unshifted 

case. Since it is connected, A would also have one of 

CR7 n9 p 

as an initial segment, which are shifted anti-stones. 

In the unshifted case, A is now normal. In the shifted case, 

is an anti-stone, so A is either normal or has only two cells in the top row. In the 
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is an anti-stone, A is U4 or Us. 
By anti-invariance, if the cell below c is in A, then A is anti-normal or is U, or 

U, in the shifted case. But either the cell to the left of c or the cell below c must 
be in A by connectedness, so A is normal or anti-normal or U,. We can assume 
without loss of generality that A is normal. 

In the unshifted case, if the cell below c is in A then A is anti-normal and is an 
R ,,m. Otherwise the lower-right corners of A form a staircase because all 
disconnected unions of a single-cell and a two-cell shape are stones. Thus A is an 

Ai. 
In the shifted case, let T be the first row which is not followed by a row exactly 

two cells shorter (i.e., stepping back one cell at the end). Let x be the last cell in 
row r. If the next row is one cell shorter than r, then the cell below x is in A. This 
implies, by the same argument used to show A is normal or anti-normal, that 
either all cells below x extending down to the diagonal are in A, and A is a DLm, 

or else r is the next-to-last row, so that x, the cell below x, and the cell to the left 
of that form a final segment 

But then A is U, because the final segments 

are stones. 
Otherwise, neither the cell below x nor the cell to the left of that cell is in A. 

But the only brick having two cells at the end of the top row and neither of the 
cells below them is 

which shows that r is the last row and A is a T,,,. 0 

The shapes of type T and type D overlap in two cases. These will be of special 
interest in Section 5, so we will honor them with their own names. 

Definition. For T,,, = DI,,--l = (2Z- 1, 2f- 3, . . . , 1) write B,. We have 1 B,I = I’. 

For D,,[ = TI,I+l = (21, 21- 2, . . . , 2) write C,. We have lC,l = 1(f + 1). 
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After all these definitions and classifications, we finally come to their purpose, 
which is the following theorem. 

Theorem 4.3. Let A be a generalized staircase and let n = [A(. We write (t mod n) 

for the element of (1, . . . , n} congruent to t (mod n). Let S = T be an elementary 

dual equivalence of tableaux of shape A, and let {j, j + 1, . . . , k} be the entries of 
the miniature segment involved in the elementary dual equivalence. Then for 
(-tmodn)${j,. . . , k - 11, pW =p’V) is an elementary dual equivalence 

involving the segment {(j + t mod n), . . . , (k + t mod n)} (the restriction on t 
makes this a genuine segment). 

Proof. For t = 1 and k < n, and for t = -1 and j > 1, the result follows from the 
analysis of the action of slides used to prove Lemma 2.1 and 2.3. Iterating this 
implies the result in turn for any sequence of consecutive allowed values of t 

containing a value to, once it is proved for to. 

All the allowed values of t fall into segments separated by gaps of length m - 1, 
where m = k -j + 1 is the size of a miniature shape. To carry the result across the 
gaps, we must show that if {j, . . . , k} = {n - m + 1, . . . , n} then p”(S) =p”(T) 
is an elementary dual equivalence involving { 1, . . . , m}. For negative c we need 
the anti-statement of this, but that follows by anti-invariance. 

To prove the last assertion, we compute p”(S) and p”(T) by the following 
steps. 

(1) Exhaust the final segments Y, and YT containing {n - m + 1, . . . , n} in S 
and T. 

(2) Slide the remaining part X of S and T into the cells of sh Ys = sh YT in the 
order given by the entries of e(Ys) and e(Y,). 

(3) Record the order in which cells are vacated by the m slides in Step (2), 
for S and T. 

(4) Perform forward slides into these cells in the order recorded in Step (3), 
filling the vacated cell with 0, -1, . . . , -(m - 1) in succession. 

(5) Add m to all entries to regain the standard 1, . . . , n. 
Now e( Y,) = e(Y,) because their shape, a final segment of A, is a brick. In Step 

(2) we are applying L(Y~) and L(Y,) to X, which is common to both S and T. By 
Corollary 2.8, both yield the same result. By Corollary 2.9, the orders recorded 
for S and Tin Step (3) describe dual equivalent tableaux 2, = Z,. In Step (4) we 
are computing e*-‘(Zs) = e*(Zs) and e*-’ (Z,) =e*(Z,) (with the entries re- 
duced by m) and they are dual equivalent because initial segments of 3c are 
anti-bricks. Step (5) merely renormalizes the entries, and so we have shown 
p”(S) =p”(T). Cl 

As an immediate application we get the following. 
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Theorem 4.4. For tableaux T of shape A, or AT we have ptAl’(T) = T’, the 

transpose of T. For tableaux of any other generalized staircase shape h except U, or 

U,* we have pIA’ = T, i.e., total promotion is the identity. 

Proof. Treating U, and U, as unshifted shapes, A is either normal or anti-normal. 

Without loss of generality assume Iz is normal. All tableaux of shape A are 

connected by elementary dual equivalences, so in view of Theorem 4.3 it suffices 

to exhibit one tableau TO of shape A. such that p’“‘(T,) = TO, or Tb if A = AI. For 

most of the generalized staircases it is a simple matter to verify that a TO which 

works is the tableau whose entries increase from left to right one row at a time. 

The case A. = D*,,, is harder than the others, so we consider it in detail. In this 

case, it is easier to show e 0 e*( TO) = TO than to compute p’“‘( TO) directly. First we 

describe e*(TO). Consider the nested normal shapes 0 = Iz, c A, c . . . c A, = Dl,m, 

where for each i, 8, = Ai/Ai_, is the rookwise connected path extending along the 

lower-right edge of Ai from the diagonal to the end of the first row. Let S, be the 

tableaux of shape 19~ in which the entries 1,2, . . . lie in descending rows up to 

some entry j, and the remaining entries j, j + 1, . . . lie in ascending columns. 

Equivalently, Si is the unique tableau of shape Oi such that \+S, has just 

one row. From standard rules for shifted evacuation [2] we find that e*( TO) = 

s, u . . * us,. 

Now we compute e(e*(T,)). As we eliminate entries from Or, the segment 

s, u . . . US,_, is subjected to forward slides. The tableau S, has the property 

that the sequence of these slides is described by S, itself, so they yield 

IS,(Si u * * S,_,) = v :] slu”.us”(S~). Since sh Yj +S, is the single row (I + m), the 

entries 1, . . . , 1+ m of e(e*(TO)) occupy the first row. Furthermore, after 

eliminating the entries from 01, the remaining entries have been moved by slides 

into the normal subshape consisting of DI,, minus its first row and hence they 

form a tableau identical to Si U + . . US,_,. It follows by induction that 

e(e*(TO)) = TO. 0 

For 4,, this result is new; it had been conjectured by Stanley [ll]. For the 

other shapes, the result was known from ad hoc proofs adapted to each shape. 

Since the original manuscript of this paper was written, Kim and I [3] have 

proven the following. 

Theorem 4.5. If A is a connected shape having the property described in Theorem 

4.3, then A is a generalized staircase. 

Theorem 4.6. The only connected shapes A for which piA’ = identity are the 

generalized staircases RI,,, D,,,, D&,,, T,,,, T&,,. The only symmetric shapes ), for 

which piA’ = transpose are the generalized staircases A, and A;. 
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5. The Greene-Edelman correspondence and the Proctor conjecture 

In the paper [l], Greene and Edelman gave a remarkable bijection between 

standard tableaux of shape Al and reduced expressions for the longest element 

wAl of the Coxeter group of type AI. The fact that these two entities were 

equinumerous had been conjectured by Stanley and also proved by him, 

nonbijectively, through the intervention of certain symmetric functions he had 

concocted expressly for this purpose [lo], see Section 6. 

Stanley had also conjectured that the number of reduced expressions for the 

longest element wB, in the Coxeter group of type BI was equal to the number of 

standard tableaux of square shape RI,l. This last number is also (by hook 

formulas, or see [2] for a bijection) the number of standard tableaux of 

trapezoidal shape BI = T,,,. It was conjectured by Proctor [lo] that for this case, 

the direct analogue of the Greene-Edelman correspondence would be a bijection 

between standard tableaux of shape B, and reduced expresssions for wB,. 

These tableau-to-reduced-expression correspondences involve the promotion 
sequence of the tableaux. In this section we apply the results of Section 4 to the 

study of promotion sequences in order to arrive in a unified manner at a new 

proof of the Greene-Edelman theorem and a proof of the Proctor conjecture. 

As a bonus, we discover that the methods used here apply not only to the shapes 

Al and B,, but also to C,, for which we give an entirely new correspondence of 

the Greene-Edelman type. 

The machinery common to all three cases is developed in the results leading up 

to Corollary 5.6. Proposition 5.8 shows that there are no other cases to consider. 

The remainder of the section is divided into subsections dealing with the 

peculiarities of each case. 

Definition. Let T be a tableau of shape A, with ]A] = n. Suppose that the 

lower-right corner cells of ;1 have been assigned fixed labels (conventionally, 

consecutive integers increasing in cross-order, i.e., upward and to the right). 

Then the promotion sequence of T is the doubly infinite sequence F(T) = 

( . . . ) r-1, r,,, r1, . . . ), where rk is the label of the cell occupied by the greatest 

entry in the tableau p “-k(T). Also we write p(T) for the short promotion 
sequence (rl, . . . , r,). q 

The seemingly curious indexing of j?(T) can be explained this way: imagine 

repeated promotion and inverse promotion steps being performed on T, without 

renormalizing the entries to the standard 1, . . . , n at each step. Then every 

integer k appears at some stage in a unique corner cell of A, and rk is the label of 

that corner cell. Note in particular that for 1 c k C n, (rk, . . . , r,,) is determined 

entirely by the final segment of T containing the entries {k, . . . , n}, and is the 

short promotion sequence of that segment. 
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The importance of p(T) is that for 3L a generalized staircase (ignoring U,), it 
determines all of p’( T). Specifically, by Theorem 4.4, p’(T) is periodic with period 
n, except for 3, = AI, where p’(T) is transpose-periodic; alternate periods have 
labels corresponding under transpose. 

We now isolate those generalized staircase shapes for which the correspon- 
dence T H@(T) is amenable to detailed analysis. 

Definition. A generalized staircase h $ {U,, U:, U,} is a perfect stainvase if it has 
the following property: if p, Y E A are miniature final segments and U = V is an 
elementary dual equivalence of tableaux of shape p, then every tableau U’ of 
shape Y having B( U’) =p(U) belongs to an elementary dual equivalence U’ = V’ 
such that p(V’) =/j(V). Cl 

Theorem 5.1. The members of the families A,, BI, and C, are perfect staircases. 

Proof. When the final segment tableau U mentioned in the definition of a perfect 
staircase is determined uniquely by its short promotion sequence B(U), the 
condition in the definition is trivially satisfied. This observation pertains to all U 
of certain shapes, including every miniature final segment in Al and most of those 
in B, and C,. The exceptions are as follows. 

First, in B, or C,, if a < b < c are consecutive, then the sequence bcab occurs as 
p(U), for U either of two tableaux: 

Mp or fl’ 

However, the sequence bacb occurs for two tableaux which are dual equivalent to 
the above two (by switching the entries 2 and 3), so the condition in the definition 

is satisfied. 
Second, in C, only, the following pairs U, U’ have p(U) =fi(U’): 

$I9 w$l 

@ FP 

EP7 x 
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Fortunately, the first pair of tableaux are dual equivalent to the second pair and 
the third pair to the fourth, SO the condition in the definition remains 
satisfied. 0 

Lemma 5.2. Let A. be a perfect staircase. If S = T is an elementary dual 
equivalence of tableaux of shape J. involving the segment with entries {j, . . . , k}, 
then p(S) and B(T) differ only in the subsequence ri, . . . , r,. Moreover, this 
subsequence in I?(S) determines the corresponding subsequence in fi( T). 

Proof. The part before ‘moreover’ follows directly from Theorem 4.3, even if A is 
not perfect. 

For the ‘moreover’, consider S’ =p”- (S) =pnwk(T) = T’. By Theorem 4.3, 
this is an elementary dual equivalence involving final segments U in S’ and V in 
T’. By perfection, e(U) determines p(V), and these are the subsequences in 
question. 0 

Lemma 5.3. Let 3L be a perfect staircase, u a final segment, U and V tableaux of 
shape ,u with p(U) = X, p(V) = Y. Suppose there exists a tableau T such that 
shTc)C, uextends shT, TUU=TUV, I3(TUU)=WXand@(TUV)=WY, 
for some sequence of labels W. Then if S is any tableau such that sh S G A and ,u 
extena3 sh S, we have p(S U U) = AX and p(S U V) = AY, for some sequence A. 

Proof. We can extend T any way we wish to the whole shape A\,u and preserve 
the hypotheses about it. Here the hypothesis that @(T U U) and B(T U V) agree 
in their initial subsequence remains true for the extension because of the 
assumption T U U = T U V. 

Similarly we can extend S; this only strengthens the conclusion. Thus we 
assume 

shTUp=shSUp=k 

We can also assume A. is normal, since otherwise the result is trivial. Hence also 
sh S = sh T is normal. 

Now Proposition 2.4 provides us with a chain of elementary dual equivalences 
transforming T into S. Applying these same elementary dual equivalences to 
T U U and T U V transforms their short promotion sequences into those of S U U 
and S U V. By Lemma 5.2 this transformation changes only the initial sub- 
sequence W, into a subsequence A that is determined by W alone. This proves 
the lemma. 0 

Proposition 5.4. Let A. be a perfect staircase and let X and Y be two sequences of 
corner labels of the same length. Let g-‘(X) denote the set of tableaux U with sh U 
a final segment of )c and p(U) =X. Suppose $r:@-‘(X)+$-‘(Y) is a bijection 
such that for each U E b-‘(X), sh G(U) = sh U. Suppose further that for all such U 
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there exists a tableau T with shape contained in A such that sh U extends sh T, 

TUU=TU$(U), and 

@(T U U) = WX, fi(T U e(U)) = WY 

for some sequence W. Then whenever AXB, AYB are sequences of lill labels, 

there is a bijection v:$-‘(AXB)-+e-‘(AYB), where q(S) is computed as 

follows: apply IBI promotion steps; change the final segment U of size 1x1 to 

e(U); apply PI inverse promotion steps. 

Proof. It is obvious that if the map I/J is well-defined then it is a bijection whose 

inverse is the analogous map corresponding to c#-‘. 

To see that q(S) is well-defined, we must first check that plB1(S) has a final 

segment U to which # applies. This is so because $(piB’(S)) = B’AX ends with 

X. 

Secondly, we must check that @(W(S)) = AYB. We observed that $(plB’(S)) = 

B’AX, where by Theorem 4.4, B’ is either B or else corresponds to B under 

transpose in case A. = A,. Lemma 5.3 applied to U and V = G(U) shows that 

changing U to G(U) changes the short promotion sequence to @(plB’(~(S))) = 

B’AY. By Theorem 4.4 again, @(W(S)) =AYB. 0 

Definition. A pair {X, Y} satisfying the hypotheses of Proposition 5.4 for a 

perfect staircase il is called a A-relation. The promotion sequences p(T) belong to 

tableaux T of shape A. are called A-words. A set R of A-relations is full if all 

A-words are connected by transformations of the form AXB +-+AYB for A- 

relations {X, Y} E R. 

Proposition 5.5. Let A be a perfect staircase, ,u a miniature final segment. If U = V 

is an elementary dual equivalence of tableaux of shape u then G(U), p(V)} is a 

&relation. All such A-relations taken together form a full set. 

Proof. Let X =@(U), Y =b(V). If U’ E@-‘(X) then by perfection U’ belongs to 

an elementary dual equivalence U ’ = V’ (necessarily unique) with V’ EL!-‘(Y). 

Then #(U’) = V’ defines the bijection required by Proposition 5.4; $ is bijective 

by perfection. The tableau T required by Proposition 5.4 for each U’, V’ can be 

taken to be empty since U’ = V’. This shows {X, Y} is a A-relation. 

If S = T is an elementary dual equivalence of tableaux of shape il, then Lemma 

5.2 shows that g(S) and c(T) differ by a A-relation of the kind just described. 

Since all tableaux of shape A are connected by elementary dual equivalences, the 

set of these A-relations is full. Cl 

Corollary 5.6. For tableaux T of a fixed shape A E {A,, Br, C,} the correspondence 

T ~fi( T) is injective. Thus it is bijective onto the set of A-words. 
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Proof. By Propositions 5.4 and 5.5, every A-word belongs to the same number of 
tableaux. We need only show that this number is 1 for some specially chosen 
A-word. We shall illustrate with the argument for il = B, and leave the other, 
entirely similar, cases to the reader. 

For B,, take the corner labels to be 0, . . . , I - 1 and consder the word 

w = (1- 1)(1- 2) . * - 21012. * . (l- 2)(1- 1)(1- 2)(1- 3) 

* . * 21012 * . * (I - 3)(1- 2) * . ~210121010. 

It is easy to see that w =@(T,,) for the tableau To whose entries increase left to 
right, one row at a time. 

Suppose now p(T) = w for another tableau T of shape BI. For the moment let 
us agree not to renormalize when promoting, so that entries retain their identity 
across promotion steps. In p(‘-‘j*(T), the entries 1, . . . , 2f- 1 form a final 
segment U with 

P(U) = (1- l)(Z - 2) * - . 101 * . * (I - 2)(1- 1). 

This can only happen if U has 1 and 21- 1 in the first row, 2 and 21- 2 in the 
second, and so on, with 1 - 1 and I+ 1 in the (I - 1)st row and I in the sole cell of 
the last row. For example, with I = 4, U is 

From the definition of promotion we see that ZJ is jeu-de-fuquin equivalent to the 
initial segment of size 21- 1 in T, so this segment is y f- U, which is a single row 
of 2f- 1 cells, i.e., the first row of T. Now that we know the entries 1, . . . , 21- 1 
occupy the first row, we conclude that the rest occupy a subshape of shape B,_,, 

and thus T = To by induction. 0 

At this point we have fully developed the general machinery for studying the 
perfect staircases. In each case, the correspondence T-a(T) is a bijection from 
standard tableaux of a given shape A to a certain set of words of length 1A1, and 
we have a description in principle of this set, in terms of a full set of A-relations. 

For our purposes we need to use full sets of A-relations more concise than the 
ones provided by Proposition 5.5. 

Definition. Let {X, Y} be a A-relation and suppose {WXZ, WYZ} is another. 
We say the first of these A-relations implies the second. 

Lemma 5.7. A set of A.-relations whose members imply all the members of a full set 
of A-relations is itself full. 
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Proof. Obvious. Cl 

Before examining each of the families A,, B,, and C, in detail, we justify our 
focus on them by showing that they are the only cases of interest. 

Proposition 5.8. Disregarding shapes with just one lower-right corner (for which 
all promotion sequences are trival), the only perfect staircases belong to the 
families A,, B, and C,. 

Proof. We are to eliminate as not perfect the shapes T,_, with m - 1 > 1 > 1, and 
D[,, with I - 1 > m > 0. For the D,,, cases, both 

2 

# 

1 3 

4 

and 

(whenm<I-2) 

have promotion sequence 1211 (labelling corner cells 1,2, . . .) but the first is dual 
equivalent to a tableau with p(V) = 2111, whereas the second is dual equivalent 
to a tableau with p(V’) = 1121. For the T,,, cases, both 

have promotion sequence 1211 but are dual equivalent to tableaux with 
promotion sequences 1121 and 2121, respectively. 0 

There are nonperfect generalized staircases A, as well as shapes which are not 
generalized staircases, for which p is injective on tableaux of shape Iz. Examples 
include T2,4 and D3,1. Among generalized staircases, one can show that p is not 
injective for D,,, when I> m + 2 and for T,,, when m > 1 + 3. Other cases remain 
open questions. 

Problem 5.9. Is the correspondence T e@(T) injective on tableaux of shape A, 
where k = D,,1--2, T1,1+2, or Tl,1+3? If so, is there a meaningful combinatorial 
interpretation of the set of short promotion sequences that occur? 
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Table 1 Table 2 
The full set of Proposition 5.5. A,-relations A full set of A,-relations 

Dual equivalence k-relation ca, ac (Ic -al > 1) 
bab, aba (lb - a( = 1) 

hoc. bra (a <b Cc) 

(2) , 8 z , 8 ach,cab (oib<c) 

(3’ a = p bab,aba (lb-al=l) 

5.1. The case I. = A, 

In this subsection, we fix 2 and the unshifted shape A = Al. As corner labels we 
use the integers 1, . . . , 1. Abusing notation we also let A, denote the Coxeter 
group of type AI and use 1, . . . , 1 to denote the simple reflections. Then reduced 
expressions of elements of AI are certain sequences of these integers, as are 
promotion sequences. 

Representing A, as the symmetric group S,,, acting on (1, . . . , I + 1) with the 
simple reflection i corresponding to the adjacent transposition (i, i + l), the 
longest element wA, is the permutation w&) = I + 2 -i. 

There are three classes of elementary dual equivalences of shape a final 
segment in Al. By Proposition 5.5 these lead to a full set of &relations. They are 
summarized in Table 1, in which a, b, c stand for integers from { 1, . . . , l}. 

If Ic -al > 1 then Proposition 5.4 applies to show {UC, cu} is a A-relation. In 
this application, the tableaux U, V = Q(U) with b(U) = UC, e(V) = cu are unique, 
and the required dual equivalence T U U = T U V is the one in entry (1) of Table 
1. The A-relation {UC, cu} (lc - a I> 1) implies those in entries (1) and (2) of 
Table 1, so we arrive at a more concise full set by Lemma 5.7, see Table 2. 

Of course, the Table 2 relations are nothing but the Coxeter relations 
connecting reduced expressions for elements of AI. The tableau To whose entries 
increase left to right one row at a time has promotion sequence 

&To) = 12. . .112. . . (I - 1). . . 123121, 
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and this is a reduced expression for the longest element wAI. Immediately we 

obtain from Corollary 5.6 two theorems. 

Theorem 5.10 (Greene-Edelman). The operation T H@(T) is a bijection from 
standard tableaux of shape A, to reduced expressions for the longest element wA, in 
the Coxeter group A,. 

Theorem 5.11 (Greene-Edelman). All reduced expressions for the longest ele- 
ment wA, of the Coxeter group A, are connected by certain restricted Coxeter 
relations, which are the A,-relations from Table 1. 

5.2. The case Iz = B, 

In this subsection, we fix 1 and the shifted shape h = B,. As corner cell labels we 

use the integers 0, . . . , l- 1. As before, we use these symbols also for the 

Coxeter group of type B, and its simple reflections. Here 0 is to be the ‘special’ 

simple reflection at the end of the Dynkin diagram with the double link. 

Representing B, as the group of signed permutations of (1, _ . . , I}, the simple 

reflection 0 corresponds to the sign change 1 H -1; the others i to adjacent 

transpositions (i, i + 1). The longest element wBI is the one that changes all signs, 

w,,(i) = -i. 
The analogue of Table 1 is shown in Table 3. Note that p(T) for a permutation 

tableau is essentially T-‘, regarding T as the permutation that is its reading word. 

The corresponding k-relations are thus the relations from Proposition 2.2, list B, 

reinterpreted for their effect on the inverse of a permutation as was done in 

Corollary 3.2. 

From Proposition 5.4 we get {ca, ac} (Ic - al > 1) as a B,-relation, using for 

instance entry (4) of Table 3 for the dual equivalence T U U-L T U G(U). This 

k-relation implies those in entries (1) through (5). We can also apply Proposition 

5.4 to get {bab, aba} (lb - aI = 1, a # 0, b # 0) from entry (6) of Table 3. This 

A-relation implies those in entries (6) and (7). In both these applications of 

Proposition 5.4, the tableaux U and G(V) are unique. 

Using Lemma 5.7 we arrive at Table 4. 

These are exactly the Coxeter relations connecting reduced expressions in B,. 
In the proof of Corollary 5.6 we computed p(T,) for the tableau whose entries 

increase left to right a row at a time; it is a reduced expression for wg,. 

Immediately we get two new theorems. 

Theorem 5.12 (Proctor’s conjecture). The operation T HP(T) is a bijection from 
standard tableaux of shape BI to reduced expressions for the longest element ws, in 
the Coxeter group B,. 



Table 3 
The full set of Proposition 5.5 B,-relations 

Dual equivalence I-relation 

(I) Permutation tableaux 

(2) 2 

P I 3 

4 

(3) 3 P I 4 

2 

(4) 4 

ti 

’ \2 

3 

(5) 
1 3 

EF 

4 

2 

(6) 
2 4 

F 

3 

1 

1 

= P 2 3 

4 

2 

:=ti 3 

3 

= I 2 P 4 

I 2 

zz P 4 

7 

2 3 

z CF 4 

1 

z 

c 4 

I 2 Iv 3 

acbd, cabd 
bacd, bead 
dacb, dcab 
dbac,dbca (a<b<c,a#d<b) 

u-ha. cubu (a f I = h CC) 

hub. bcah (a + 1 = h cc) 

abac. ubcu (II + I = b CC) 

bacb, bcub (a<b=c- I) 

dbab,daba (d<a,d<b,Ib-al=l) 

babd, abad (d <a, d < b, lb - al = I) 

0101, 1010 

Table 4 
A full set of B,-relations 

ca, ac (Ic - aI ’ 1) 
bab, aba (lb-al=l,a#O,bfO) 
0101, 1010 



106 M.D. Haiman 

Theorem 5.13. All reduced expressions for the longest element wn, of the Coxeter 
group Bt are connected by certain restricted Coxeter relations, which are the 
B,-relations from Table 3. These can be summarized as: 

acbd, cab 

bacd, bead 

3 

dacb, dcab 
(a<b<c,dSb,ifd=bthenb=a+lorb=c-1) 

dbac, dbac 

daba, dbab 

abad, babd 
(d <a, d < b, lb - al = 1) 

0101, 1010 

Kraskiewicz [5] has independently constructed a bijection from reduced 
expressions for wB, to tableaux of shape B,. It can be shown that his bijection is 
A-1 

P . 

5.3. The case A. = C, 

In this subsection we fix 1 and the shifted shape A. = Cl, with corner cells 
labelled 1, . . . , 1. We will be concerned here with the Coxeter group B,+l and we 
use 0, 1, . . . ,I for its simple reflections as in Section 5.2. 

For C,, Table 5 is the analogue to Tables 1 and 3. Here we carry over all but 
entry (8) from Table 3, and add entries for final segments involving both cells in 
the last row of C,. 

Exactly as for B,, we get from Proposition 5.4 the A-relation {ca, ac} 
(Ic - a( > l), as well as {bab, aba} ((b - a( = 1, b # 1, a # 1). These A-relations 
imply those in entries (1) through (5) of Table 5. 

It might appear that Proposition 5.4 would also give (212,121) as a C,-relation, 
using the last entry in Table 5. This is false, however, because there is not a 
unique final segment tableau V with p(V) = 121. Using Lemma 5.7, Table 6 is 
the best we can get. 

We now define the sequences which will turn out to be the Cl-words. 

Definition. A winnowed expression of order 1 is a sequence that can be obtained 
from a reduced expression for the longest element wB,+, in the Coxeter group B,+, 
by deleting all instances of the simple reflection 0. 

Observe that any reduced expression for wB,+, contains 0 exactly 1 + 1 times, 
since in its representation as a signed permutation every element of (1, . . . , 

I+ l} must change sign once. Therefore every winnowed expression has length 
l(l+ 1) = ICI. 

In order to show that the winnowed expressions are the C,-words, we first 
establish that the set of them is closed. 
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Table 5 

The full set of Proposition 5.5. &relations 

Dual equivalence A-relation 

(1) From Table 3 Entries (1) through (7) 

(2) I,,3f!l,4~ lblc,lbcl (l<b<c) 

(3) #_ r-7-p llcb lclb (I<b<c) 

1112j 
(4) 

3 

u? 

1 

2 4 

(5) 
2 

IIT 3 

1 4 

(1131 
2 r-F I 

1 

2 3 

2 4 

1 2 CfF 3 4 

hlcl, hell (l<h<c) 

l&l. clhl (1 <h <c) 

2121. 1211 

Table 6 
A full set of C,-relations 

ca, ac (Ic -al > 1) 
bab, aba (lb -al = 1, a # 1, b # 1) 
1212, 1121 
2121, 1211 
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Lemma 5.14. The set of winnowed expressions of order I is closed under 

substitutions reflecting the &relations of Table 6. 

Proof. Let W be a winnowed expression obtained from the BI+l-word X. 

If ca occurs in W, with Ic - al > 1, it comes from either ca or cOa in X. In Bt+l, 

c and a commute and at least one of them commutes with 0, so ca = ac and 

cOa = Oat or ac0. Hence we can substitute ac for ca and get another winnowed 

expression. 

If bab occurs in W, with lb - al = 1 and a, b # 1, it comes from either bab, 

bOab, or baOb in X (bOaOb would not be reduced). Since they are not 1, a and b 

commute with 0, so bab = aba and bOab = baOb = Oaba. Hence we can substitute 

aba for bab and get a winnowed expression. 

If 1121 occurs in W it comes from 10121, 101201, or 101021 in X (adjacent l’s 

are not reduced, nor is 1010201). We have in Bltl that 10121= 10212 and 

101201= 101021= 010121= 010212. Winnowing, we get 1212 to substitute for 

1121. Conversely, if 1212 occurs in W it comes from 12012, 10212, 120102, or 

102102 in X (without one 0 between the l’s it is not reduced). In BI+1, 

12012 = 12012 = 10121 and 120102 = 102102 = 102120 = 101210. Winnowing, we 

get 1121 to substitute for 1212. The substitution {2121,1211} follows by 

symmetry. 0 

Proposition 5.15. The set of winnowed expressions of order 1 is equal to the set of 

Ct-words. 

Proof. It is readily verified that for the tableau To of shape C, whose entries 

increase left to right a row at a time, @(To) is a winnowed expression. In fact it is 

the winnowing of the promotion sequence for the similar tableau of shape BI+l. 

It follows from Lemma 5.14 that every C,-word is a winnowed expression. 

Now the set of all winnowed expressions is connected under substitutions of the 

forms 

ca, ac (Ic - al > 11, 
bab,aba (lb -al = 1). 

This is true because the Bt+l- words are connected by Coxeter relations from 

Table 4, which reduce to these substitutions, except for (0101, lOlO} which 

reduces to no change at all after winnowing. 

If the set of C-words were closed under the above substitutions, it would show 

that every winnowed expression is a Cl-word, completing the proof. Unfortun- 

ately, the substitution (121,212) is not valid for C-words. However, it suffices to 

show something weaker, namely that if A121B and A212B are both winnowed 

expressions, and one is a C-word, then so is the other. 

Both the set of C-words and the set of B I+,-words, hence also the set of 

winnowed expressions, are closed under cyclic permutations (by Theorem 4.4) so 
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we can assume B is empty and our winnowed expressions are A212 and A121. 
Using Lemma 5.14, we can modify A by any C,-relation. Consequently, if T is a 
tableau such that p(T) is one of our winnowed expressions, we can modify its 
initial segment of size IC,l - 3 by any elementary dual equivalence, and since this 
segment is normal we can replace it by any tableau of the same shape. 

Now we examine three possible cases. In the diagrams below, m, < m2 < m3 < 

m4 stand for the four greatest entries of T. 

(I)p(T) = A212, so T has a final segment 

m2 m4 

EP 1723 

Then we can assume this is part of a final segment 

m2 m4 

EEP ml4 

so that A212 = Cl212 and A121 = Cl121 is a Cl-word. 
(II) fi( T) = A121 and T has a final segment 

m2 m.? 

EP m4 

Just as in case (I), we can assume A121 = Cl121 so that A212 = Cl212 is a 
C-word. 

(III) j?(T) = A121 and T has the final segment 

m? 

n9 m3 m4 

Then we can assume this is part of a final segment 

ml+ 

r..EFl mZ m4 

SO that A121 = C2121. But then A212 = C2212 and this contradicts the hypothesis 
that A212 was a winnowed expression, for 22 could only come from winnowing 22 
or 202 and these are not reduced. 0 

As corollaries, we have the expected two theorems. 

Theorem 5.16. The operation T HJ?( T) is a bijection from standard tableaux of 

shape C, to winnowed expressions of order 1. 

Theorem 5.17. All winnowed expressions of order I are connected by certain 

Coxeter-type relations, which are the C,-relations from Table 6, or more 

restrictively, from Table 5. 
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The last theorem is purely a statement about reduced expressions for ws,+,. It 

does not seem apparent whether this theorem can be proved easily without 

recourse to the tableau-promotion machinery used here. 

Incidentally, winnowed expressions have a direct combinatorial interpretation: 

a winnowed expression of order 1 is a minimum-length sequence of adjacent 

transpositions of I+ 1 symbols realizing the identity permutation and such that 

each symbol is carried to the left-most position at some intermediate stage. 

6. Reduced expressions of general Coxeter group elements 

The A, and B, correspondences from Section 5 can be used to derive canonical 

non-negative integers rn: for any element a of the relevant Coxeter group and 

each normal shape A such that the number of reduced decompositions of LY equals 

En m;;fn, where fn denotes the number of standard tableaux of shape A. For A,, 

this was worked out by Greene and Edelman. In this section we work out the 

analogue for BI. 

For AI, the numbers rn; are the coefficients expanding Stanley’s symmetric 

functions of [lo] into Schur functions. This was noted by Greene and Edelman, 

and also by Lascoux and Schiitzenberger [6], whose ‘nilplactic monoid’ provides 

an alternative approach to the Greene-Edelman theory for A, and an inter- 

pretation of the ‘Stanley functions’ in terms of Schubert polynomials. As Stanley 

observed, the analogous functions for BI fail to be symmetric. Nevertheless he 

conjectured that the function associated to ws, is symmetric and equal to the 

Schur function sR,,,. Here we give a brief treatment of Stanley functions in order 

to prove this conjecture and at the same time explain their failure to be 

symmetric in general for BI. 

Throughout this section, w stands for w,+ or ws,, depending upon the context. 

Proposition 6.1. The bijections T H@(T) of Theorems 5.10 and 5.12 have the 

property that the final segment of T containing {k, . _ . , n} determines the 

corresponding segment (rk, . . . , r,,) of c(T), while the initial segment (r,, . . . , rk) 

of@(T) determines the corresponding initial segment of T, for any 1 c k c n. 

Proof. The relationship of the final segments is clear from the definition of B(T). 

As for the initial segments, suppose fi( T) = AB and $(T’) = AB’. B and B’ are 

reduced decompositions of the same element A-‘w, so we may as well assume 

they differ by a single Coxeter relation. If that relation is of the form aba = bab in 

the case of Al or 0101 = 1010 in the case of B,, then T and T’ differ only by an 

elementary dual equivalence in the corresponding segment, so have the same 

initial segment. Otherwise the relation is either ac = ca, or, in the case of B,, 

possibly aba = bab. But then according to Proposition 5.4 we may obtain T’ from 

T by applying pf for some t s IBI - 2 (or 1 B( - 3), exchanging n and n - 1 in the 
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corner cells labelled a and c, (or a and b), and applying p-l. In this process, the 

initial segment of T corresponding to A is subjected to forward and reverse slides, 

and no other changes. Since this segment begins and ends with normal shape, it 

ends the same as it begins. 0 

This proof apparently cannot be adapted to Theorem 5.16. While we could 

replace the Coxeter relations with Table 6, in the absence of Coxeter group 

structure we cannot conclude that B and B’ differ by these relations just because 

AB and AB’ do. Nevertheless the following seems quite probable. 

Conjecture 6.2. Proposition 6.1 applies to the bijection of Theorem 5.16 as well. 

In view of Proposition 6.1, we can meaningfully extend the map p-i carrying 

reduced expressions of w into tableaux to a map carrying arbitrary reduced 

expressions into tableaux. 

Definition. Let E be a reduced expression for some element in AI or B,. Extend 

E to a reduced expression EX for w, and define B(E) to be the initial segment of 

size IEl in the tableau j?-‘(EX). Thus B(E) is a normal tableau whose shape is 

contained in A, or Bt and O(E) is well-defined, independently of the choice of X, 

by Proposition 6.1. 

Theorem 6.3. Let (Y E A, or B,. Then as E varies over all reduced expressions for 

a, the multiset of tableaux B(E) contains each tableau T of each shape A with 

multiplicity rn; depending on A but not on T. 

Proof. Fix a reduced expression X of (Y-~w. Then E is a reduced expression for a 

if and only if EX is a reduced expression for w. Hence the tableaux B(E) consist, 

as a multiset, of the initial segments of all tableaux S of shape At or B, whose final 

segments have short promotion sequence X. In particular, the required rn: is the 

number of such final segments with shape At/A or B,/3L, in the respective 

cases. 0 

Corollary 6.4. The number of reduced expressions for IX is equal to CA rnzA. 

The Stanley symmetric functions are defined as follows. Let {xi, x2, . . .} be a 

countably infinite set of variables. For any subset D c (1, . . . , n - l} define a 

monomial Xi, * * . xin of degree n to be D-admissible if ik s ik+l for all k, and 

I~ < ik+l when k E D. The Gessel quasi-symmetric function Qb(x) is then the sum 

of all D-admissible monomials. Q,(x) is in general a nonsymmetric polynomial of 

degree n. If we define for a tableau T of size n the descent set D(T) by k E D(T) 

when k + 1 occurs in a strictly lower row of T than k, it is easy to see that the sum 
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is the generating function for column-strict tableaux of shape A, which is a 

symmetric function. In fact it is (by definition) the Schur function sA(x). 

Definition. Let a E At. The Stanley symmetric function F,(x), homogeneous of 

degree I(a), is given by 

where E ranges over reduced expressions for CY, and D(E) is the descent set of E, 

i.e., the set of k such that Ek > Ek+l. 

Proposition 6.5. For T of shape At, with E =$(T), D(T) = D(E). 

Proof. The property k E D(T) is unaffected by the operation pnPk-‘, provided 

we do not renormalize the tableau entries in performing pnPk-‘, since this 

operation only subjects the entries { 1, . . . , k + l} to slides, and slides preserve 

descents in the unshifted plane. After this operation, k and k + 1 occupy corner 

cells labelled Ek and Ek+l, so k is a descent in T if and only if it is a descent in 

E. q 

Corollary 6.6. F,(x) is symmetric and its expansion into Schur functions is 

F,(x) = Ch m%. 

Slides in the shifted plane do not preserve descents, so Proposition 6.5 fails for 

BI. However, there is a bijection between shifted tableaux of shape BI and 

unshifted tableaux of square shape R,,t, see [2, 121. From R,,, to Bt, this bijection 

is given by regarding the unshifted T as shifted and computing 7 t T by shifted 

jeu-de-tuquin. From this description it follows that the bijection commutes with 

promotion (this is most easily seen by considering p-l). It is also true that 

n - 1 E D(T) if and only if n - 1 E D(\ +-T). IfE=p(V+T), thenkED(E)if 

and only if n - 1 E D(E’), where E’ is E permuted cyclically n - 1 - k places to 

the right. Hence n - 1 E D(E’) if and only if n - 1 E D(P”-‘-~(V t T)) if and 

only if n - 1 E D(P”-‘-~(T)) if and only if k E D(T). Thus D(E) = D(T) and we 

have proved the following. 

Corollary 6.7. For B = ws,, FB(x) is equal to the Schur function So,,,. 
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