CHAPTER 11

Groups of Permutations

111 PERMUTATIONS AS GROUPS

In Problem 11 of Chapter 1 we asked, “What is the most effective way to shuffle a pack of
cards?” To answer this question we need to return to the ideas about permutations that
we introduced in Section 2.6 of Chapter 2 where we discussed permutations and cycles.
We will see that permutations provide an example of a mathematical structure called a
group. Groups play an important role in many areas of mathematics. Qur interest in them
is because of their relation to problems involving counting patterns. So the work in this
chapter is also used later. In particular, we see that it underlies our answer to Problem
13B about the number of ways to color a cube using three colors. We expect that many
readers will have met some group theory before. However, we will not assume any pre-

vious knowledge. All the ideas about groups that we use will be introduced as we need
them.

You will recall from Chapter 2 that you may think of a permutation of a set, X, as a bijec-
tion &: X — X . Usually X will be a set of the form {1, 2,..., n} for some positive integer 7.
We let S, be the set of all permutations of the set {1, 2,..., #}. In Section 2.6 we introduced
two notations for these permutations. In the brackel notation we describe a permutation by
writing the numbers 1 to 7 in one row, with the numbers that ¢ maps them to in a second
row, enclosing both rows in one pair of brackets. So, for example, if we write

6_123456
4 6 1 3 5 2f

this means that ¢ is the permutation of the set £1,2,3,4,5,6} such that (1) = 4, 6(2) =6,
0(3) =1, o(4) =3, 6(5)=5, and o(6)=2. In the alternative, cycle notation, we write
0= (1 4 3)(2 6}(5) o, leaving out the cycle of length 1, just

c=(1 4 3){2 6).

223




224 ®m How to Count: An introduction to Combinatorics, Second Edition

TABLE 11.1
1 4 32 6 15 2 93 6

5 — 5 «— 1
3 & 4 « 2
2 — 6 — 3
4 — i — 4
6 — 2 & 5
1 e 3 o 6

Since permutations are functions, we can compose them in the usual way. If ¢ anc
permutations of the same set we can define the composite permutation, GO, by

o ot(x)=o{t{x)).

Permutations that are given to us in cycle notation can be composed by workii
what happens to each element in turn. When doing these calculations it is impor
remember that the composite permutation G O 7 means first T, then ©. Here is an 3
of how it works out in practice. : ,

Leto=(143)(26)andletT= (152 4)(36) betwo permutations from S, We can
late the composite permutation G 0T by the method illustrated in Table 11.1.

We work from right to left as ¢ © T means carrying out the permutation T fir
example, 6 0 (1) = clr())=0()=5 and ¢ © 1(4) = o{T(4)) = o(1) = 4, as indicated
table. Having worked out all the values of G O 1, we can read off from this table the t
notation for 6 O 1, as

and we can then rewrite this in cycle notation as
got=(156)(23).

After a bit of practice you will not find it necessary to write out the calculati
composite permutation in full. The arrow diagram shown in Table 11.1 can be wor
mentally, and it should be possible to write down the composite permutation in ¢yc
tion without the need to write down any intermediate steps. If you think you nee
practice with these calculations, attempt Exercises 1L.11A and 11.1.1B, or swap €2
with a colleague, if possible.

The operation of composition of permutations has a number of important a
properties that we now describe. Although we are mainly interested in permuta
sets of the form {1, 2,..., n}, these properties hold for arbitrary sets of permutation
give general proofs of these properties.
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First, we introduce some notation. We use $(X) for the set of all permutations of the set
X, The identity map on X is the function 1y : X — X, given by

forallx € X, 1,(x) = x.

It should be clear that 1, is a permutation of X; that is, it is a bijection. Since permutations
- are bijections, they have inverses. We use the standard notation o' for the inverse of a
permutation G.
We usually omit the symbol © for composition and write Gt for the composite permuta-
tion G C T.

THEOREM 11.1

For each set X, the operation of composition on the set, S(X), of permutations of X has
the following properties.

a. Forall o, 1 € S(X), 61 ¢ S(X).

b. Forallg e $(X), o1, =0 =1,0.

¢. Foralloe §(X), o0 =y =0"c.

d. Forallo, 7,p € $(X), (o1} p = & (1p)-

Proof

a. Suppose 6, T € S(X). Let x, y € X with x # y. Then, as T is injective, T(x) # 1(y),

and hence, as 0 is injective, o(1(x)) # o(t(y}), that is, o1(x) # o1(y). So oTisinjec-

- tive. Now suppose z € X. Then, as ¢ is surjective, there is some y € X such that
o(y) = z, and as T is surjective, there is some x € X such that 1(x) = y. Thus there
is some x & X such that o1(x) = o(1(x)) = 6(y) = z. So OT is surjective. We have
therefore shown that o7 is a bijection, and hence that o1 € S(X), as claimed.

. For x € X o1,{x} = 61, (x)) = 6(x). Consequently, o1, = ¢. Similarly, 1,0 =0.

. This follows immediately from the definition of ¢!.

. Suppose 0, T,p € S(X) and x € X. Then {(oT)p)(x) = (cD(p(x)) = (o(t{p(x) =
oltp(x)) = (6(1p))(x). Since the composite permutations (GT)p and c{1p) have
the same effect on each x € X, we deduce that = (o7)p = o(1p).

We need to mention two more notational points. Expressed in terms of cycles the
identity permutation 1 € §, consists of # cycles of length 1. If we adopt our standard
convention of not bothering to write down cycles of length 1,1 would simply be repre-
sented by an empty space! This is not always convenient, so usually we write either t for
the identity permutation, or often e (from the German einheit).

Because we usually omit the symbol © when we are writing composite permutations,
there can be an ambiguity. For example, if we write

(124)(35X1435)
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this could mean

(124)(35)0(1435) or (12 4)0(35)(1435) or
((12 4)o(3 5))o(l 4 3 5) or {1 2 4)o((3 5)o(1 4 3 5)).

However, it follows from Theorem 11.1d, that these different expressions all 1o,
sent the same permutation, and so this ambiguity of notation does not cause 5 le.
problems. 'l“

‘The properties of permutations given in Theorem 11.1 are so important that we piy,
a special name to any collection of mathematical objects that can be combined iy 4 i-“:

that satisfies them. This is embodied in the following definition.

DEFINITION 11.1

A group is a pair (G, #), where G is a set and e is an operation defined on G that satisfie *
the following four properties.

THE GROUP PROPERTIES

G1. Closure: Forallx, ye G, xeye G.

G2. Identity: There is an element e € G, such thatforall xe G, x«e e x and
eexX=X

3. Inverses: For each x € G, there is an element x' e G, such thatx ¢ =4
andx'ex=e,

G4. Associativity: Forallx, y, z€ G, (xey)e z=xe(y ® 2).

The notation e used in this definition carries with it an implication that there {s just
one element of G satisfying the identity property. It is not difficult to prove this. indeed
suppose, to the contrary, that we have two elements e, ¢, in G with this property. Then .
forall x € G, x ® e,=x and so, in particular, ¢, ¢ e, = ¢,. Also, forallx € G, e, 0 x=x
and so ¢, » &,=e¢,. Consequently e, =e, ¢ &;=¢,. The unique element of G satistying the -
identity property is called the identity element of the group. As shown in the definition,
we often use e for the identity element of a group. If we need to emphasize that itis the .
identity element of G, we write this element as eg.

In a similar way the use of x! carries with it the implication that for eachx € (i
there is just one element satisfying the inverse property. This is also easy to prove, 38
if x,, x,7! were botlr inverses of x, we have x, !, xlee=xto(xex, )= fx,' *x)
l=eex,T=x,"

Tn cases where it is clear from the context which operation is involved ip a particu
lar group, we write xy instead of x e y. Similarly in such cases, we often talk about “th
group G” rather than “the group (G, o}

It follows from Theorem 11,1 that for each set X {8(X),0) forms a group- Permutativ
groups form a very important class of groups. Indeed, in a sense explained At the en
of Section 11.2, all groups can be viewed as permutation groups. However, the richne
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of the group concept arises from the many other examples of groups that occur in
mathematics, We list some of these examples, though they will not be of great interest
to us in this book.

Examples of Groups

L. (Z, +), the set of integers with the operation of addition, forms a group. Likewise,
(Q, +), the rational numbers; (R, +), the real numbers; and (C, +), the complex
numbers, all with the operation of addition, form groups. In each case the iden-
tity element is the number 0, and the inverse of x is ~x. It is easy to check that all
these examples satisfy the definition of a group,
The sets Z, Q, R, and C do not form groups when the operation is multiplication,
They are all closed under this operation, that is, GI holds. In each case the num-
ber 1 acts as an identity element. Also, multiplication satisfies the associativity
property. However, there is a problem with the inverse property. When the opera-
tion is multiplication, the number ¢ has no inverse, as, if there were any inverse,
say z, it would have to satisfy 0 X z = 1, which is not possible. In the cases of Q, R,
and C we can get around this difficulty by excluding 0. Thus, if we use Q% R*, and
C* for the nonzero rational numbers, nonzero real numbers, and nonzero com-
plex numbers, respectively, then (Q', X ), (R, X ), and (C", X ) are all examples of
groups, with 1 as the identity element and 1/x as the inverse of x. It is from these
examples that we derive the general notation x~! for the inverse of x. However,
this does not work for the set, Z', of nonzero integers, since only for x=1 and
x=-11is I/xalsoan integer.

The examples in the next category are much more important.

3. For each positive integer n, and each field* of numbers, F, let M,(F) be the set
of 1 X n invertible {also called nonsingular) matrices, with entries from F, and
let X be the usual operation of matrix multiplication. Then (M,(F),x) is a
group,

4. For each positive integer n, (Z,, + ) is a group where Z,_is the set {0, 1,2,..., n-1},
and +, is the operation of addition modulo #.

M

In these examples, the group elements are familiar mathematical objects, and the
Operations are natural ones for those particular objects. Although, in a philosophical
sense, mathematical entities are abstract objects, they seem very real to the mathemati-
cians who work with them. Accordingly, groups of these kinds are sometimes referred
to as concrefe groups. In contrast, with abstract groups we do not specify what the group
clements actually are, but only how they are combined. When the number of elements
is small, this can be conveniently displayed by giving a multiplication table.

Here is an example of this type. The set G is {e, a, b, ¢, b, v, 1, s}. The operation o is
defined by Table 11.2. The value of x e y is found by looking at the entry in the x-row
and y-column, For example, we can see from the table that ve c=s.

" A field of numbers is a set of numbers closed under the operations of addition and multiplication, and in which
these operations have the standard properties. The rational numbers, Q; the real numbers, R; and the complex
f'“-m‘!bers, C, arc ajl examples of fields. The integers, Z, do not form a field. For the details see, for exampie, R. B. ].
T Allenby, Rings, Fields and Groups, Arnold, London, 1983,
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TABLE 11.2
. e a b c h v r s
€ e a b ¢ h v r s
a | a b ¢ e r 5 v h
b|lb ¢ e a v h 5 r
cl|lc e a b s r h v
h ik s v r e b ¢ a
v]iv r h s b e a ¢
r h s v a ¢ e b
s|s v r h ¢ a b e

A table of this kind is called either a group fable or sometimes a Cayley table* It is
not difficult to see from this table that the first three of the group properties are satis-
fied. To check closure we need only check that each entry in the table is one of the ele-
ments of the set G. The convention of using e for the identity element and putting it first
in the table makes it easy to confirm that e acts as the identity element, but even if some
differently named element had been the identity, and it had been placed somewhere
else in the list, it would not have been difficult to spot from the table that it satisfies the
x® e=x=e» xproperty. To see that the inverse property x  x! = ¢ = x~* ® x holds, we
need only check that the identity element, e, occurs once in each row and column and
in positions that are symmetrical about the leading diagonal from the top left to the
bottom right of the table.

We see, for example, that @ # c=e=¢ ® a, so that @' = cand ¢ = 4, and in fact all
the other elements of this group are their own inverses.

To complete the check that Table 11.2 does indeed define a group, we need also to
check that the operation  satisfies the associativity condition. Unfortunately, there is
no very easy way to do this from the table, as this involves checking that (x ® y) ¢ z =
x e (y e 2) for all choices of x, y, and z. In fact, it is not necessary to check the cases where
at least one of x, y, and z is e, but this still leaves 7 X 7 X 7 = 343 cases. If you are not
willing to do all these calculations, we ask you take it on trust for the time being that the
operation e is associative. We prove that it does have this property in the next section.
Fortunately, as the proof of Theorem 11.1(d) shows, whenever the group elements are

1

functions and the operation is composition, the associativity property always holds. E

You may have noticed that in Table 11.2 each group element occurs exactly once £

in each row and each column. Tables of this kind are called Latin squares. In Exercise b

11.1.2A you are asked to prove that a group table is always a Latin square. Latin squares e
are interesting and important combinaterial objects, but because of shortage of space

we are not able to discuss them in this book. e

Exercises i

W

11.1.1A  Evaluate the following compositions of permutations. i

L}

i (154)(3672)0462)1537)
i, (14986)(23)0(156)0(7132)

* After Arthur Cayley, whose biography is summarized in a footnote in Section 10.1,
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11.1.1B  Consider the permutations ¢ = (158237)46),1= (17352486),
and p=(1 3 7)4 6 8 2) from 5. Find the permutations ¢ 0 7, 1O 0,
(cotopandcO(TOp)in cycle form, and hence verify that in this case
(co1op=00(Top)

11.1.2A Prove that, if (G,#) is a group, then
iLForallx, y,2,€ G,

a. xesy=xez=>y=zand

b, yex=zex=y=2

ii. Forall x, y€ G, thereexist w,z€ G suchthatxew=yandzex=y.

{Note that it follows from (i) thatina Cayley table there are no repetitions
in any row or any column. Also it follows from (i) that each group ele-
ment occurs at least once in each row and in each column. Thus together
(i) and (ii} imply that each row and each column form a permutation of
the elements of the group. Each Cayley table is, therefore, a Latin square.
However, as Exercise 11.1.4B8 shows, the converse is not, in general, true]

11.1.2B A group, (G#), is said to be commutative (or Abelian) if forallx, ye G,
x# y=y® x. For which positive integexs r is the group (5,,0) commutative?

11.1.3A Find a permutation ¢ € S; such that (4352 1)0c = (1 4)(2 3).

I1.L.3B  Show that there is no permutation 6 € S, suchthat{123)0c=0c0(12).

11.L4A  Show that the following table can be completed in just one way S0 as to form
a Latin square, and that when so completed, it is the Cayley table of a group.

e a b
a b

o
[+

11.1.4B  Give a multiplication table for the operation ¢ on the set X = {e,a,b,c,d} that
forms a Latin square in such a way that satisfies the closure, identity, and
inverse properties, with e as the identity element, but (X,e} is not a group.

112 SYMMETRY GROUPS

Litoups are very useful when it comes to studying the symmetries of geometric figures.
1‘:::,; ljse ind Fhe next chapter, we need .to takt? symmetries inlto account wh‘en it cvomes
. ing different p'atternS. We explain the idea of geometric symmetry with a simple

_Exmple, the symmetries of a square, shown in Figure 11.1,
M’\‘L\?E;l:re is a symrfletrical figure, but what exac‘tly do we mean by this? One way of
e lmn%fSYmITle‘try is to. say that the square oc.cuples.the same space and looks the same
e (thay i:f?i itin certain ways. For example, if we give the sqgare a quarter t.urn clock-
hece, atis, if we rotate the square through an angle 7t clockwise about the axis through
ter of the square, and perpendicular to the plane of the square),* it looks exactly the

e as i s . L. . .
sit did originally. We now need to make this idea more mathematically precise.
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FIGURE 11.1

; First, we need to be more precise about what transformations are allowed. If we vy -
| the figure to look the same after the transformation it must not distort either distances ¢, .
angles. Since the anglesina triangle are determined once we know the lengths of its sides, 3
transformation that doesn’t change distances also leaves angles unchanged. So all we neegd
to specify in our definition is that the transformation leaves distances unchanged. As w.
want to consider both two- and three-dimensional figures, we frame our definition in terms
of a space that could be either two-dimensional Euclidean space, R, or three-dimensional
Euclidean space, R, In both these spaces we use d(p.q) for the distance between two points
p and g, measured in the standard way.* ‘The figures that we mention in the following
definition are subsets of either R? or R%. E

DEFINITION 11.2

Let § be either R? or R3. ‘A mapping f: § - S is said to be an isometry ifforallpge S,
d(f(p), Aq) = d(p.q)- A symmetry of a figure F in the space S is an isometry f:5-58
such that f(F) = F.

It should be noted that an isometry is automatically injective, as we have that for any
two points p, 4, p# q = d(p,q) >0 = d(fip), fla) = d(p.g) > 0= f(p) # flg). It can be
shown that the isometries of R* are either rotations, reflections, translations, or glide
reflections.t However, a bounded figure, such as a square, cannot be mapped to itsel{ by
a translation or glide reflection, and so we need only consider rotations and reflections
of bounded figures in R2 In R? we may also need to consider symmetries that are com-
positions of a reflection and a rotation. We should also not forget the identity mapping,
¢, which satisfies Definition 11.2 and so counts as a symmetry of every figure.

It is important to note that because we regard symmetries as functions, two transtor-
mations of a figure that are physically different but have the same effect on all the points
are regarded as being the same symmetry. For example, rotating a figure through an
angle 17 clockwise about an axis is physically different from rotating it through an
angle 27 counterclockwise about the same axis. However, these different operations
have the same effect on each point, so they will count as being the same symmetry-

* That is, in R? we measure distances by d((x,, yo (2 ) =l 2 P+ (= ¥,)t and by the analogous fnnuuis
in R In fact, the definition that we give applies more generally, but we do not need to consider the more erf

context here. _‘
t See, for example, David A. Brannan, Matthew F. Esplen, and Jeremy ]. Gray, Geometry, Cambridge Univer

Press, Cambridge, 1999.
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]

The symmetries of a square
e Identity
a Rotation through ¥m clockwise

b Rotation through 1t clockwise

¢ Rotation through % anticlockwise

I Reflection in the horizontal axis

v Reflection in the vertical axis shown

if we want ) b r Reflection In the diagonal axis shown
i es or )
1;5.tan‘cd o ¢ s Reflection in the diagonal axis shown
sf ifs sides, a

il we need The rotations are about the axis through the
ali we centre of the square and perpendicular to it.

1ged. As we
ioninterms FIGURE 11.2

limensional
. tW(;lpm‘ntS . This is nothing more than our usual stipulation that iff:D— Candg: D~ Careboth
1e following functions with the same domain and codomain and for all x € D, f(x) = g(x) then we

say that f=g

Now that we have been careful to say what we mean by a symmetry of a figure we
can see that a square has eight symmetries, as shown in Figure 11.2. The symbols used
for these symmetries are somewhat arbitrary, but we will continue to use them.

We will use the notation S(0) for the group of symmetries of a square. It is now
quite straightforward to work out the Cayley table for this group. We encourage you to
do this. You might find it helpfut to have an actual square to manipulate, Don’t forget
that in line with our usual convention for composing functions, when we compose two
symmetries, say fand g, to obtain the composite fi this means first do g, then do £,

pge S
:§S— S

tforany
t can be

or glide
itself by You should obtain exactly the same table as Table 11.2 in the previous section. Since
fections the operation is composition of functions, we now know, without having to do lots

of calculations, that the operation defined by Table 11.2 is associative. Hence it is the
Cayley table of a group. In particular, we can also deduce that the symmetries of a
square form a group. This is a special case of the more general result that the symme-
tries of any figure always form a group. This we now prove.

ire com-
1apping,

transfor- :
2e points - THEOREM 11.2
‘ough an The set, G, of the symmetries of a figure, F, with the operation, denoted by ©, of com-

-0118]? an position, forms a group.
serations

mmetry. Proof
We need to check that the four group properties are satisfied by (G, ©). Suppose that f

nalogous formula : and g are symmetries of F. Then as fand g are both isometries we have, for all points p
‘the more general and g (of the appropriate space),

bridge Universit
’ e d(fe(p), fe(a)) = d(fg(p)s flgla) = dlg(p): (gl@) = d(ps9),
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L
4

FIGURE 11.3

and hence fg is also an isometry. Since f (F) = ¥ and g (F)=F fg (F)=fgF) =f(F) = F.
1t follows that fg is also a symmetry of F. Thus the closure condition holds.

Tt is straightforward to check that the identity map is a symmetry of F, and hence
that G has an identity element. Fach symmetry is a bijection and so has an inverse. We
leave as an exercise (Exercise 11.2.14) to check that if fis an isometry of Fthen so also is
f, and hence that G satisfies the inverse condition. We already know that composition
of symmetries is associative. Hence it follows that (G, 0) is a group.

Note that nothing in the above proof depended on the fact that we were dealing with
figures in two- or three-dimensional space. The proof would work just as well in higher
dimensional spaces. The only problem is that figures in four- and higher dimenstonal
spaces are more difficult to picture!

We can relate groups of symmetries to permutation groups by adding numerical
labels to the vertices or edges or, in three dimensions, the faces of a figure, For example,
suppose we label the vertices of a square with 1, 2, 3, and 4 as shown in Figure 11.3i.

We can describe the symmetries of the square by specifying how the vertices move.
For example, the symmetry h, which is the reflection in the horizontal axis of sym-
metry, moves the vertex in position 1 to position 4, the vertex in position 2 to position
3, and so on (notice that we regard the numbers as labeling positions that are fixed in
space), Thus the permutation h corresponds to the permutation (14)(23)in S,. Youcan
readily see that each symmetry of the square corresponds to a permutation in S, In this
way the eight symmetries of the square correspond to the eight permutations

e, (1234),(13)(24),(1432),(14(23),(12)34),(13),24)

from §,, which therefore, by themselves, form a group. This provides us with our first
example of a subgroup, a concept that we describe in more detail in the next section.
Notice that if we label the edges as shown in Figure 11.3ii, then we get a different corre-
spondence between the symmetries of the square and permutations in S,. For example,
using the labeling of the edges, the symmetry h corresponds to the permutation (1 3).

. Tn one sense the group of symmetries of a square is different from the group made up of
the eight permutations listed above, since their clements are different, that is, symmetries
in the first case and permutations in the second. However, in another sense they are differ-
ent manifestations of the same group, We now make more precise what we mean by this.

Tn Figure 11.4 we show three Cayley tables; (i) is that of the rotational symme-
tries of a square, (ii) is the group Z, of the numbers 0, 1, 2, 3 with addition modulo 4,
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) [ e (1234 (3249 Q¢ 32

e e 12 34 @1 4 04+ 32
12 3 i@ 2 3 4 1 32 4 @432 e
Q3@ & 32 » 0 4 3 2 e a2 3 4
143 la a3 2 e 12 3 4 (1 32 4

FIGURE 11.4

and (iii) is the group of the corresponding permutations of the vertices of the square,
Although the tables contain elements of different types, it is evident that the three tables
display the same pattern. For example, the identity element occurs in the same positions
in each table, and the element a occurs in the same position in the first Cayley table, as
does the number 1 in the second table, and the permutation (1 2 3 4) in the third table.

‘We say that all three groups are isomorphic because they have the same structure in
a sense that we now make precise. Note the similarities, and the differences, when this
definition is compared with that of isomorphism of graphs (Definition 9.3).

DEFINITION 11.3  Isomorphism of Groups
Let (G, #) and(H,*) be groups. We say that these groups are isomorphic if there is a bijec-
tion B: G > H such that for all g,,g, € G, we have

0(g02)=0(g)*0(g) (11.1)

Such a mapping 6 is called an isomorphism between the two groups.

For example, the mapping 0 from the permutations corresponding to the rotations
of a square and the numbers modulo 4 [given by iii and ii in Figure 11.4}, namely,

Ge)=0,0((1234)=1,6({13)24)=2,and 8((1 43 2)) =3,

is an isomorphism between the two groups. We check just one case of the Equation
11.1. We have

01324 0(1432)=0((13)(24)+,0((1432)

since the lefi-hand side is 0((1 2 3 4)) = 1 and the right-hand sideis 2+ ;3 =1

Note that in, Definition 11.3, the equation 8(g; ® g,) = 6(g;) * 6(g,) expresses the fact
that combining elements in the group (G,) and then mapping to (F*) produces the
same result as first mapping to (H,*} and then combining in (H,*). This condition implies
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that the Cayley tables of the two groups have the same pattern. As with isomorphisms
between two graphs, an isomorphism between {wo groups is a structure-preserving cor-
respondence of their elements. We regard two isomorphic groups as being essentially the
same. So, for example, if we are asked, “How many different groups with four elements
are there?” we are being asked to find the largest set, say X, of groups with four elements
such that no two of the groups in X are isomorphic, but each group with 4 elements is
isomorphic to one of the groups in X. Since the groups whose Cayley tables are shown in
Figure 11.4 are isomorphic, any such set X can include at most one of them.

We have seen that each row of a Cayley table corresponds to a permutation of the
group elements. For example, if we look at table (i) in Figure 11.4 we see from the a-row
that a corresponds to the permutation that in bracket notation we can write as

and in cycle notation as (e a b c). A theorem due to Cayley says that this correspondence
is always an isomorphism between a group (G,») and the associated group of permuta-

s. This is not difficult to prove once we notice that the permutation

tions of its element
of G defined by

of G that corresponds to the clement g€ G is the permutation, 8,
6,(x) =g e x. Here s the proof.

THEOREM 11.3
Cayley’s Theorem for Groups

Each group (G} is isomorphic to a group of permutatjons of its elements, with the
operation of composition.

Proof
Foreachge G, welet8,: G— Gbethe mapping defined by:

foreachxe G, Bg(x) =gex

By Exercise 11.1.24A, each mapping 6, is a permutation of the set G. We let G* be the set
of all these permutations, and we let ©: G — G* be the mapping defined by 9(g) = 6,
Since O(g)e) =0, (e) =goe=g it fotlows thatif g # g then ©( 2)e) = O(g')e) and hence
that ©(g) # ©(g"). Consequently, © is injective. By the definition of G* O is surjective,

and hence © is a bijection.
We also have that, forall g, g, € G,andallxe G,

Og, * £.)(x) =0, ()=(& o g) e x =8 *(8: x)=0, (8,,(x))=0,, 08, (x),

and therefore
(g, 08)=98° 0g, = A(g) ° O(gy)-

Hence @ is an isomorphism between the group (G,#) and the group (G*, ©). This com-
pletes the proof.
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In this sense every group may be viewed as a group of permutations. However, expe-
\ce shows that this is not always a helpful way to think about groups. Note also that

. gldl
¢ the group (G*,0) is generally forms only a small subset of the group (S(G), O) of all per-
5 mutations of the set G. For, if G is a group of 1 elements, there are n! elements in $(G).
Z Exercises
i 11.2.1A Prove that if fis a symmetry of the figure F, then the inverse, 7, of fisalso
a symmetry of f
11.2.1B Prove that if f: R? —> R? is an isometry, then fis surjective.
¢ 11.2.2A i. How many symmetries does an equilateral triangle have?
L 5 ii. Introduce some symbols for the symmetries of an equilateral triangle,

and draw up the Cayley table for the group of these symmetries.
iii. Express the symmetries of an equilateral triangle as elements of S, by
using the numbers 1, 2, and 3 to Jabel its vertices.
11.2.2B i, How many symmetries does a regular pentagon have?
ii. How many symmetries does a regular n-gon (that is, a polygon with

S S ' sides, with all the sides equal and all the internal angles equal) have?
- How many rotational symmetries does a cube have? Describe them.

0 Tnvestigate the rotational symmetries of a regular tetrahedron.

oo - Show that the group of rotational symmetries of an equilateral triangle is

isomorphic to the group Z; of the integers 0, 1, 2 with addition modulo 3.
Show that every group with two elements is isomorphic to the group Z, and
that every group with three elements is isomorphic to the group Z.

i. Show that each rectangle has four symmetries (note that we are taking
“rectangle” to imply “not a square”) and that the groups of symmetries of
any two rectangles are isomorphic. It follows that we can talk about “the
group of symmetries of a rectangle.”

ii. Show that the group of isometries of a rectangle is not isomorphic to the

group Z,.
Prove that every group with four elements is isomorphicto either the group
Z, or to the group of symmetries of a rectangle.

he

0, o 1.3 SUBGROUPS AND LAGRANGE'S THEOREM

"1‘“'{? theory is a large subject with an enormous literature. We are going to confine our-
tolvpe . . .
- [‘ ts to those aspects of the subject that are relevant to the combinatorial problems we are
Wore : - s Tt '
¢rested in. The following definition is important.

DEFINITION 11.4

“\‘“PPOSe that G is a group. A subset H of G is said to be subgroup of G, if H itself forms
& group with respect to the same operation that makes G a group.

E‘:\t: }-Iere it- is very convenient to be able to suppress mention of the group operation.

tion f: e(f; e being rea.lly pec?antic, we \.‘vouid have distinguish between the group opera-

on Ky NG say e, which, strictly speaking, is a mapping*:GX G = G, and the operation
» which is the restriction of e to the set H.

mni-
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Since H is a subset of G and we are using the same operation as for the group G, it
automatically follows that H satisfies the associativity property. Thus, for H to be a sub-
group of G, H must be a subset of G that satisfies the following properties, labeled “SG”
for “subgroup™

THE SUBGROUP PROPERTIES

SG1. H itself is closed under the operation ; that is, for all x, ye H, xeye H.
SG2. H contains the identity element, eg, of G.
$G;3. H contains inverses of all its elements; that is, for each xeH, also x”'eH.

We now present some examples of subgroups.

Examples of Subgroups

1. We have seen that Z, Q, R, and C are all examples of groups, with the operation
of addition in each case. Since Z < Q & R < C, it follows that Z is a subgroup of
Q, Q is a subgroup of R, and R is a subgroup of C.

2. Each group, G, with more than one element has two trivial subgroups. The set
{ec} containing just the identity element of G can easily be seen to satisfy the sub-
group conditions. At the other extreme, the whole group G also counts as being a
subgroup of itself.

3. 'The eight permutations from §, corresponding to the symmetries of a square
form a subgroup of §,.

4. We consider the group, S,, of all the six permutations of the set {1, 2, 3}. Rather
than write out these permutations in cycle form, we introduce the following sym-
bols for them, Weputp={123),g=(132),r=(12),s= {23), t=(1 3), and eis the
identity element, as usual. The Cayley table for this group is shown in Table 11.3.

Tt can be seen that the top left-hand corner of the table, taken by itself, is also the Cayley
table of a group, In other words the subset {¢, p, 4} forms a subgroup of §,. In this case itis
rather easy to spot this. In general, it is rather difficult to find subgroups just by examin-
ing Cayley tables. Can you find any more subgroups from this Cayley table? In fact, apart

: from the two trivial subgroups, and the subgroup fe, p, g}, there are just three other sub-
3 groups, each containing just the identity and one other element.

TABLE 11.3

e p q r s t
i

: e e p 4 r 5 t
plp g ejt r s
| . 9149 e P s t r
| r r s t P q
s § t roq e p
| ¢ 13 r s P q e

* See, for example, Allenby, Rings, Fields and Groups, Theorem 5.6.5, for a proof that H is a subgroup if and onlyil
it satisfies these subgroup properties.
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Some theory comes to our aid when it comes to finding subgroups. This has to do
with the number of elements in a subgroup compared with the number of elements in
the group. Group theorists have special terminology for the number of elements in a
group or a subgroup.

DEFINITION 11.5

The order of a group, or a subgroup, is the number of elements in it.

For example, the order of §; is 6, and the group of symmetries of a square has order
8. Group theorists often use the notation o(G) for the order of a group, but we have
already introduced the notation #(G) for the number of elements in any set G, and so
we will keep to this notation. )

The key idea in what follows is that given a group G and a subgroup H we can use H
to partition G into sets, called, in this context, cosets, all having the same number of ele-
ments as does H. 'They are defined as follows. To make the general idea more concrete,
we use the group $, as our example. '

DEFINITION 11.6

Let G be a group and let H be a subgroup of G. For each ge G, the coset gH is defined to
be the set {gh:he H}.

We use the notation gH for the coset, as it is obtained by combining the fixed ele-
ment g of G with all the elements of H in turn, and so the notation gH is rather sugges-
tive and a good aid to memory. We now look at the specific example of the group §, to
make these ideas more concrete.

PROBLEM 11.1

Find the cosets of the subgroup {e, r} of the group S,. (Recall that the Cayley table of S,
is given in Tabie 11.3.)

Solution

We calculate the cosets as follows:

el =lee,er}={e,r}, gH ={ge,qr}={q.s}, sH ={se,sr}={s.q},

pH={pe,pri={p.f}, rH=lresr}=lrel,  tH={ter}={1,p)}.

We see that the cosets of different elements can turn out to be the same set. For exam-
ple, the cosets pH and +H both consist of the set {p. t}. Note that as we are dealing with
sets, the order in which their elements are listed in our calculation does not matter, In
other cases the cosets are completely different. For example, there is no element that is
in both pH and rH. Thus the different cosets partition G into three disjoint sets, namely,
G={e,r} U {p, 1} U g, s}. Furthermore each coset contains the same number of elements

ind only if . as the subgroup H. Thus #{(G) = 3 x # (H), and it follows that # (H) is a divisor of # (G).
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Of course, we do not need group theory to work out that 2 is a divisor of 6. However, the
point of this example is that we can prove that the facts we have noticed about the cosets
of H are true for all subgroups of all groups. This we now prove.

It is convenient first to prove a lemma that gives a useful criterion for when two
cosets, g, H and g, H, are identical.

LEMMA 114
If G is a group, H is a subgroup of G, and g, &, € G, then

gH=g;He g s e H. (11.2)

Proof :

First, suppose g, H = g,H. Since H is a subgroup, e€ H, and hence g, = ge€ g,H. Hence,
as g, H = g,H, we deduce that g, € &1, and so there is some h'e H such that g, = g,h"
Therefore g, g,= g, g4’ =h’and hence g, "' ¢, € H.

Second, suppose g, 1 g, € H. Let h=g," g,. Then g, =g, h. Now assume x€ g, H. Then
for some We H, x=g I =g, hlt. As H is a subgroup of G, we have hh'e H, and hence
x€ g, H. The argument to show that if x& g, H, then x € g, H is similar. Therefore,
xe g He xe g H and hence gy H=g,H.

We can now prove the main result of this section.

THEOREM 11.5
If Gis a finite group and H is a subgroup of G, then the different cosets of H partition G
into disjoint sets each containing the same number of elements as does FH.

Proof

Tf xe G, then as ee H, x = xee xH. Thus each element of G is in at least one coset of H.
Now suppose x is in two cosets, say x€ g, H and xe g, H. Then for some h, h,€ H, we
have x = gk, = gh,. Tt follows that g, ' g =h, by -1, Now as h,, i€ H, and H is a subgroup
of G, it follows that il € H, and therefore g, 'g; € H. Tt then follows from Lemma 11.4
that g, H=g, H. Therefore each element of G is in exactly one of the different cosets of H.
Suppose #( H) = n. Say that H= {h,,..., B}, where the elements h, are all different. Then
for each ge G, gH = {gh,,..., gh,}. Since gh; = gh; implies ;= h; (see Exercise 11.1.24),
the elements gh, are all different. Therefore #(gH) = n = #( H). Our key theorem is now
an almost immediate consequence of Theorem 11.5. '

THEOREM 11.6
Lagrange’s Theorem*

If H is a subgroup of the finite group G, then the order of H is a divisor of the order of G.

* "This theorem js named after Joseph Louis Lagrange (1736-1813), who was born in Turin in Ttaly. His mother was
French and his father Italian. Eventually he moved to Paris, and in 1797 he became professor of mathematics at the
Ecole Polytechnique. Although Lagrange’s theorem is now regarded as a fundamental result about finite groups, it
was proved by Lagrange before the concept of a group had been isolated. Lagrange proved his theorem in a more spe-
cial case dealing with the number of different polynomials that are obtained when its variables are permuted. For @
good account of Lagrange’s work, and the history of algebra more generally, see John Derbyshire, Unknown Quantity,
A Real and Inaginary History of Algebra, John Henry Press, Washington DC, 2006, and Atlantic, London, 2007.
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Proof

By Theorem 11,5, the different cosets of H completely partition G into disjoint sets each
containing #( H ) elements. So if there are k different cosets of H, we have that

kx #( H)=#(G), (11.3)
and it follows immediately that #( H) is a divisor of #(G).

Although we have stated Lagrange’s theorem for finite groups, it can be extended
to the cases where the group G is infinite and H is either finite or infinite. The proof
that the cosets of H partition G is just the same in this case. It is possible to interpret
Equation 11.3 in these cases using Cantor’s theory of infinite sets, but this does not lead
to any very interesting conclusions.

Note also that in the finite case Lagrange’s theorem tells us only about the possible
orders of the subgroups of a given group, G. They must be divisors of the order of G.
However, not all these possible orders need be realized. There are cases where n is a
divisor of the order of a group G, but G has no subgroup of order 7. An example of
this kind may be found in Exercise 11.3.2B. There is an extensive theory originated by
the Norwegian mathematician Ludwig Sylow (1832-1918), which specifies cases where a
group does have subgroups of certain orders, but this is beyond the scope of thisbook *

Exercises
11.3.1A Determine which of the following sets form subgroups of the group, 5(0),
of symmetries of a square (whose Cayley table is given in Table 11.2}.

i. {e,a,b,c} ii. {e,a,b,¢,h,v} iii. {h,v,r,s} iv. {e,r}

11.3.1B  Which is the smallest subgroup of 8(77) that contains both the symmetries
band h?

11.3.2A. We have already noted that the set, Z, of integers forms a group with the oper-
ation of addition. Show that the subset, H, consisting of all integers that are
multiples of 5, is a subgroup of Z. How many different cosets does H have?

11.3.2B  Consider the following set, G, of 12 permutations from S

e 1 23 4,0 32 490 4942 0 2 30 3 2
1.2 4,0 4 2,0 3 4,0 4 3,2 3 4,(2 4 3)

G forms a subgroup of §,. This can be seen most easily by noticing that the permuta-
tions in G correspond to the rotational symmetries of a regular tetrahedron with its
vertices labeled 1, 2, 3, and 4. Show that although G has order 12 and 6 is a divisor of
12, G does not have a subgroup of order 6. (You might find this easier after reading
Section 11.4.)

—
%
See, for example, Allenby, Rings, Fields and Groups, Chapter 6.
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11.4 ORDERS OF GROUP ELEMENTS

Let G be a group, and let g be an element of G. Since G satisfies the closure condition, g,
is also in G, and hence also g(gg), and hence g(g(gg)), and so on, Because G satisfies the
associativity condition, we can leave out the brackets, and write ggg and gggg for these lagt
two elements of G. At this point it is convenient to introduce the notation g” for m
that is, for the result of combining n g’s together. Thus g2 is gg, g* is ggg, and so on. We also
use g! for g, and it will sometimes be convenient to write g° for the identity element e. It is
immediately apparent that, when 1 and » are positive integers, g” g"= g"‘*.", as both sides
of this equation result from combining m+# g’s (but note that this index law depends on
the associativity property). Also, if g”==g" with m>n, then g™ g"=g", and hence gmn=:¢,
'This observation will be useful in the sequel.

Now if G is a finite group, the elements g" for #=0,1,2,... cannot all be different. Suppose
that g™ =g" with m > n. Then, as we have just noted, g""=e, where 1~ is a positive inte-
ger. It follows that there is a smallest positive integer k, such that g*=e. 'This integer k is
given a special name.

DEFINITION 11.7

The least positive integer, k, if there is one, such that g*=e, is called the order of the
group element g, and is written o{g). If there is no such k, we say that g is an element of
infinite order,

PROBLEM 11.2

Calculate the orders of the elements of the group S,, whose Cayley table is given in
Table 11.3.

Solution

In each group e!=e, and so the identity element has order 1. It is, clearly, the only ele-
ment of order 1. We see from the table that r? = s =*=¢, and hence 1, 5, and ¢ have
order 2. We also have that p? = q, and hence p*=p(p?) = pq = e. Thus p # ¢, p*# ¢, but
p*=e, and 5o p has order 3. Similarly you can check that g has order 3. ‘

We are now ready to explain the relationship between the meanings of order as used
in Definitions 11.5 and 11.7. We first need a technical lemma.

LEMMA 11.7
Let G be a group and let g be an element of G of (finite) order k. Then for all integers m,
n, we have

gn=g" & m= n(mod k) (11.4)

and, in particular,

g"=e & n=0(mod k); that is, k is a divisor of n. (11.5)

¥
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Proof

We first prove the equivalence 11.5. Then we show that we can deduce the equivalence
in Equation 11.4.

Since g has order k, g"=e¢, and hence, for each integer m, g™ = (g")"=e"=e. So if n
is a multiple of k, g"=e¢. Conversely, suppose that g"=e. Let r be the remainder when » is
divided by k. Hence 0 < r < k and for some positive integer m1, it = mk + r. Then g™+ r=e¢
and hence g"= g™ ¢g'= g™+ =g"=¢ Since 0 <r <k and k is the least positive integer
such that gt=e, it follows that r = 0. So # = mk and so k is a divisor of #. This proves the
equivalence 11.5.

Now suppose m, 1 are positive integers with, say, m = n. Then using the equivalence
11.5, we have that gm = g" & g" " =¢ & k is a divisor of m — n <> m = n(mod k). This
proves the equivalence 11.4. '

1t follows from this lemma that if g is an element of order k in a group G, there are only
k different elements of the form g" in G, namely, e,g.¢%....g"". Tt is not difficult to show that
these elements form a subgroup of G (see Exercise 11.4.3A). This subgroup has order k.

In particular, in the case where G is finite, by Lagrange’s theorem, k is a divisor of the
order of G. We have thus proved the following useful consequence of Lagrange’s theorem.

COROLLARY 11.8
Lagrange’s Corollary

If Gis a finite group, and g € G, then the order of g is a divisor of the order of G.

As with Lagrange’s theorem itself, this corollary only tells us about the possible
orders of group elements. For example, you will see from the solution to Exercise 11.4.4B
that in the group $,, which has order 24, there are no elements of orders 6, 8, 12, or 24,
even though these are all divisors of 24. We are now ready to give the first application
of group theory to a combinatorial problem. We do this in the next section.

Exercises

11.4.1A Calculate the orders of the elements of
i. The group of symmetries of a square,
il. The group of rotational symmetries of a cube.

11.4.1B Calculate the orders of the symmetries of a regular tetrahedron.

11.4.2A Calculate the orders of the elements of the group Z,, of the integers
{0,1,..., 11} with addition modulo 12.

11.4.2B Show that in the group of rotational symmetries of a circle, for each posi-
tive integer k, there is a symmetry of order k, and also that this group con-
tains efements of infinite order.

11.4.3A Show that if g is an element of (finite) order k in a group G, then the subset
H={egg...g5" is a subgroup of G,

11.4.3B Suppose that g is an element of order 5 in a group G. Draw up the Cayley
table for the subgroup {e,g.¢%.¢.¢%}. Is this group isomorphic to another 0
group you have already met? (It might help to write e as g’ and g as g'.) i

11.4.4A Tind all the subgroups of the group of symmetries of a square. (You may
find it useful to use the Cayley table of this group as given in Table 11.2.)

11.4.4B Find as many subgroups of S, as you can.
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11.5 THE ORDERS OF PERMUTATIONS

Shuffling a pack of cards amounts to permuting the cards. Generally the method is roughly
to divide the pack into two piles and then more or less interleave the cards in one pile with
those in the other pile. With very great skill, a standard pack of 52 cards can be shuffled by
dividing the pack into two equal piles of 26 cards, and then alternating the cards from the
two piles. This can be done in two ways depending on whether the card that is originally
on top stays on top or ends up as the second card in the permuted pack. These two shuffles
are called a top riffle shuffle and a bottom riffle shuffle, respectively, or, alternatively, an ous
shuffle and an in shuffle, respectively. These two shuffles are illustrated in Figure 11.5.

How many of these shuffles must take place before all the cards are restored to their
original positions? It helps to answer this question if we write the relevant permutations in
cycle notation. For example, we see that in the top riffle shuffle, the card originally in posi-
tion 1 stays in position 1, the card originally in position 2 moves to position 3, ... the card
in position 27 ends up in position 2, and so on. Thus this shuffle, which we denote by g
corresponds to the permutation that is, in bracket notation,

1 2 3 . . 24 25 26 27 28 29 . . 50 51 352
i\ 3 5 . . 47 49 51 2 4 6 . . 48 50 52)

In cycle notation this is

(102359173314 27)(d 7 132549 46 40 28)(6 11 21 41 308 15 29)
(10 19 37 22 43 34 16 31) (12 23 45 38 24 47 42 32)(18 35)(20 39 26 51 50 48 44 36)(52).

We can now easily calculate the order of this permutation from its expression in cycle
notation. We have already seen in Chapter 2, Section 2.6, that if we have a cycle of length 1,
then the numbers in the cycle are returned to their original positions after the permutation

26 —> 52
52 26 —
Top riffle or out shuffle Battom riffle or in shuffle

FIGURE i1.5
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has been carried out n times. We see that G . is made up of six cycles each of length 8, one
cycle of length 2, and two cycles of length 1.

Thus we need to carry out this permutation only eight times before each card is returned
to its original position. In the language of group theory, we say that ¢ ;- has order 8. Thus,
ifyou could carry out a perfect riffle shuffle eight times in succession (a very big “if"l}, you
could give the appearance of having shuffled the pack very well, while returning all the
cards to their original positions. A very useful skill to have. The bottom riffle shuffle is
rather different. We ask you to calculate its order in Exercise 11.5.4A.

Here is another example. Consider the permutation ¢ = (1 2)(3 4 5)(6 7 8 9) from S,
Consider the effect of 6 %, that is, carrying out the permutation & times. The numbers 1 and 2
are returned to their original positions if k is a multiple of 2. To return 3, 4, and 5 to their
original positions, k needs to be a multiple of 3, and to return 6, 7, 8, and 9 to their original
positions, k must be a multiple of 4. So the least positive number k such that ¢* returns all
of 1, 2, ..., 8, and 9 to their original positions is the least k that is a multiple of 2, 3, and 4.
That is, the order of G is the least common multiple of 2, 3, and 4, namely 12. It is easy to see
how this generalizes. If a permutation in disjoint cycle form is made up of cycles of lengths
kyk,,....k,, then the order of the permutation is the least common muttiple of k,k,,.. ..k,. We
write this least common multiple as lem(k,,.. . k).

Since the order of a permutation is determined by the structure of its disjoint cycle rep-
resentation, it is useful to introduce some terminology and notation for this. We call this
structure the cycle type of the permutation. We represent cycles of lengths 1, 2, 3, and so on,
by the algebraic symbols x,,x,,x,, and so on. We represent the number of cycles of a given
length by writing these symbols with the appropriate exponents. So, for example, the cycle
type of the permutation o = (1 2)(3 4)(5 6)(7 8 9 10 11) is x,’x,}, indicating that ¢ is made
up of three cycles of length 2 and one cycle of length 5. Often the exponent 1 is omitted, so
that the cycle type of & could be written as x,%x;.

In general, a permutation has cycle type x; "X 2...x b, where k},k,,....k, is an increasing
sequence of positive integers, and ry,...,7, are positive integers, if in disjoint cycle form it is
made up of r, cycles of length k,, for 1 <t <s. The usefulness of this notation will become
apparent in Chapter 14,

Suppose G is a permutation from S, with cycle type x;,"...x, % Then the total number of
the positive integers in the cycles that make up o is . Hence we must have

nk 4. +rk=n ' (11.6)
If we rewrite Equation 11.6 as
. i
b+ . +k+k+ .+t +. 4kt =n, (1.7}

we see that Equation 11.6 corresponds to a partition of n, as described in Chapter 6. Thus
the different cycle types of permutations in S, correspond to the partitions of #. Since two




Exercises

11.5.1B

11.5.24
11.5.2B
11.5.3A
11.5.3B
11.5.4A

11.54B

11.5.5A

11.5.5B Find the largest order of the permutations in S,
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TABLE 11.4
Partition Order

4 4
3+l 3
2+2 2
2
1

2+1+1
1+14+1+1+1

permutations that have the same cycle structure have the same order, if we want to find the
orders of the elements of S,, all we need do is list the partitions of n. So, for example, the

orders of the elements of S, are as given in Table 11.4.
Thus, as we remarked in the previous section, S is a group of order 24 in which there are

1o elements of orders 6, 8, 12, and 24 even though these are divisors of 24,

11.5.1A Find the orders of the following permutations.

a. (12X345)0(6789)(1011 1213 14)
b.(123)4567)(8910111213)
Find the order of the permutation & €S, which in bracket notation is

1234567891011121314151617181920
7814126111610174152091218135319'

i. Find a permutation in S5 that has order 105.

ii. Show that for n < 15 there is no permutation in §, of order 105.

i. Find a permutation in S,, that has order 1001.

ii. Show that for # < 31 there is no permutation in §, of order 1001,

For 1 = 4,5,6, find the orders of the permutations in .

Yor 1 < n < 10 find the largest order of the permutations in §,.

Express the permutation corresponding to a bottom riffle shuffle of 52
cards in disjoint cycle form, and use this to calculate its order.

Express the permutations corresponding to a bottom riffte shuffle and a top
riffle shuffle of a pack of 40 cards, and calculate their orders.

Tind the largest order of the permutations in Sg,. (There are 281,589 parti-
tions of 52, so that, without a computer, it is hardly practicable to answer
this question by listing all the partitions and then calculating their least
common multiples. Your search for a partition that corresponds to a per-
mutation of the largest possible order should be guided by the fact that
since for distinct primes p, q and positive integers k, I, p* + < pipl, it is
only necessary to consider partitions in which the parts are either powers
of primes, or 1. We can regard the permutation of largest order in S5, as giv-
ing rise to the most effective way of shuffling a standard pack of 52 cards.
Thus the answer to this exercise could be regarded as providing us with an
answer to Problem 11 of Chapter 1.}




CHAPTER 12

Group Actions

12.1 COLORINGS

In Chapter 1 we mentioned the following two problems.

+

PROBLEM 13A

Coloring a Chessboard

How many different ways are there to color the squares of a chessboard using
two colors?

Onastandard 8 x 8 chessboard, the squares are colored alternately black and white as
shown in Figure 12.1i, but clearly they could be colored in many other ways. Alternative
colorings are shown in Figure 12.1ii and iii. The problem is to decide exactly how many
different colorings are possible, '

PROBLEM 13B

Coloring a Cube

In how many different ways can you color a cube using three colors? One such coloring
is shown in Figure 12.2,

These problems have a similar character. One difference is that the first problem is
about a two-dimensional figure, and the second problem is about a three-dimensional
figure. In this chapter we discuss only the first problem, as it is rather easier to work
in two dimensions than in three. The solutions to both problems are given in the next
chapter after we have described the ideas needed to solve them.

To make things as simple as possible for us, we begin by dealing with the case of a
2 x 2 chessboard; the case of a 1 x 1 chessboard is too simple for us to learn anything
useful from it. A 2 X 2 chessboard has four squares, so with two choices of color for each
square, there are altogether 2* = 16 ways it can be colored. These 16 colorings are shown
in Figure 12.3, where we have labeled them Cl, C2, ..., C16, for future reference.

Are these colorings really all different? This depends on what we mean by “different.”
It seems reasonable to say that some of these colorings really are the same, and that they
only look different because the chessboard has been rotated or reflected. For example, if
we give the coloring C2 a quarter turn clockwise, it looks like C3. Also, the reflection in
the vertical axis converts C2 into C3. From this point of view C2 and C3 are the same.

245
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Indeed, in this light there are only six different patterns among these colorings. That s,
we can put the colorings into the following six sets, with all the colorings in the same

set having the same pattern.

{C1}, {C2, C3, C4, C5}, {C6, C7, C8, Co}, {C10, C11}, {C12, C13, C14, Cl15}, {C16}

Lurking in the background are the symmetries of the square. We have put two
n one from the other by applying one of the
symmetries of a square. As it happens, the case of a coloring of a 2 x 2 chessboard
with two colors is so simple that it makes no difference whether we take into account
reflections or not. In each case, whenever there is a reflectional symmetry taking one
coloring to another coloring, there is also a rotational symmetry that does the same
job. However, there is a difference as soon as we consider 3 x 3 and larger chessboards.
Consider the two colorings in Figure 12.4, There is 2 reflectional symmetry that takes
coloring (i) to coloring (ii), but no rotation of (i) produces coloring (ii).

colorings in the same set if we can obtai

We are free to choose whether we wish to regard these colorings as having the same

n or not. This amounts to deciding which group of syminetries we are going to use,

patter
or just the subgroup consisting

cither the full group of all eight symmetries of the square,
of only the identity and the rotational symmetries. The underlying theory turns out to be
the same whichever group of symmetries we choose. The theory we are speaking about

here deals with the interaction between a group and the members of some set. In the cases

ofinterest to us the group will always be a group of symmetries of some figure, and the set 12.
will be a set of colorings of the same figure. We
Exercises say
12.1,1A How many colorings are there of pari
i. A standard 8 x 8 chessboard, using two colors desc

ii. The faces of a cube using three colors .

12.1.1B How many colorings are there of an n X chessboard using k colors? s
12.1.24  Giveanexample of two colorings ofa2 X2 chessboard, using three colors, such (pos
that one can be obtained from the other by a reflection but not by a rotation. usec

12.1.2B  Are there two colorings of the faces of a cube using two colors such that this
one can be obtained from the other by a reflection but not by a rotation? orde

and

o) (i) i)

FIGURE 12.1

FIGURE 12.2
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2 THE AXIOMS FOR GROUP ACTIONS

wish to describe the general situation where we have an interaction between a group,

G,and a set, say X. In this abstract discussion youmay find it helpful to keep in mind the
ings of a 2 X 2 chessboard,

ticular example of the symmetries of a square and the color
cribed in the previous section. We will often refer to this example.

dtheset?

The symmetries of a square in our example interact with each coloring to produce a
lars. such ossibly} different coloring. For example, the quarter turn clockwise, for which we have
otation. the symbol a, interacts with the coloring C2 to produce the coloring C3. We express
such that by writing 2> C2 = C3, and in general, we use g»>% for the result of ¢ acting on x. In

derto develop a general theory we require that this interaction satisfies a couple of simple

station? -
d natural properties, as given in the following definition.

ws?

- DEFINITION 12.1
Let{Ge) be a group and let X be a set. We say that G acts on Xifforeachge G and
cach x & X, there is defined an element gbx € X, in such a way that the following
Properties hold:

THE GROUP ACTION CONDITIONS

ij- For each x € X, e b x = x, where e, is the identity element of C.
GA2. For all g8, € G, and each x e X, gy v (g > X} = (g, ® glrx

—,

7 -
Whenever 5 group acts on a set we say that we have a group action.
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We stress that, in a group action, the elements of G are usually completely differeyy
from the elements of X. Thus the action of g on x to yield g x is very different from, ¢,
example, the combination of two group elements, which are objects of the same king
to produce another group element. 50, although we often omit the symbol for 4 grouP,
operation and write gh instead of g » b, the symbol b should never be left out. It helps 1,
remind us of the disparity between g and x. {In those cases where the elements of the
group G are functions with domain X, it may sometimes be appropriate to write £(x)
in place of gt x.]

It is not difficult to see that if G is a group of symmetries of a figure, and if X is the
set of all colorings of the figure, then the action defined as in the previous section sat.
isfies properties GAl and GA2. In this case GAl amounts to the fact that the identity
element of G is the identity map, 1, and for each coloring x, 1>x = (x) = x, and GA2 to
g (g ) =g(g()) =g 080 =(£0° g x. Thus the examples of the previous sec-
tion are group actions. For some examples of a different kind, see the exercises at the
end of this section.

We conclude this section with a simple technical lemma about group actions that

we need later on.
figure

symir
ol a iy
figure

the lat

LEMMA 12.1
Let G be a group that acts on a set X. Then for each g€ G, andallxye X,

grx=y&givy=x

Proof
Suppose that gt x == y. Then, g & y =g & (g x)=(g'eg) > x by (GA2),=erx=x,
by GAL

The converse implication, g by = x = g x = y, is proved similarly.

Exercises
12.2.1A Let G be the group, (R, +), of real numbers with the operation of addition,
and let X be the set, R?, of points in the plane. Suppose we define the action
of R on R? by specifying that for each 8 € Rand all x € R?, 0p x = the point
to which x is moved by a rotation through an angle 8 counterclockwise
about the origin. [Thus, 8 (x,y) = (x cos® — y sin8, x sin@ + y cosB).] Show
that this satisfies the group action conditions.
12,2.1B This question is about a more sophisticated example of a group action. Let
G be any group. We define an action of the group G on G by: for g & Gand
x € G, gt x = gxg™. Show that this satisfies the group action conditions. The
action in this case is called conjugation, and gxg™ is called the conjugate of
x by g 'This plays an important role in the theory of groups, but it is not
greatly important from the point of view of this book. _
12.2.2A Let n be a positive integer. We define the action of the group, S, of all
permutations of the set {1,2,...,n} on the set of edges of the complete
graph, K, = (V,, E,), with n vertices, say V, = {vy.... v}, by: for 6 €35,
and {v, vje E, o> {vs vit = (Voo Vgl Show that this satisfies the group

in
]
th
of

Lt
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action conditions. This example of a group action plays an important role

when it comes to counting the number of different simple graphs, as we

do in Chapter 14,

12.2.2B Let G be a group, and let g, be a particular element of G. We define the
action of the group, (Z, +), of the integers with addition, on G, as follows:
For ne Z and geG, n> g = ghg, where we interpret gg as the identity element
e, of G, and for 1 < 0, we interpret g7 as (g;")™. Show that this satisfies the
group action conditions.

12.2.3A Suppose that the group G acts on the set X. Show that forallg, h € Gand all
xe X, grx=hrxeghrx=x :

12.2.3B Consider the group action of R on R? as described in Exercise 12.2.1A,

Determine the set

0 eR:GD(1,0)=—E[>(1,0)}.

123 ORBITS
We can now explain, in terms of group actions, what is meant by two colorings of some
figure being regarded as “the same.” We regard two colorings as being the same if some
symmetry of the figure maps one to the other. Consequently, whether or not two colorings
ofa figure are regarded as being the same will depend heavily on which symmetries of the
{igure are taken into account. We can now explain this situation in general terms by using
the language of group actions and giving a definition in this general context.

DEFINITION 12.2

Let Gbe a group that acts on a set X. We define the relation ~; on X as follows:
For allx,y € X, x ~5 y ¢ there is some g € G such that g-x = y.

The notation suggests that ~ is an equivalence relation. We now prove that this is
indeed the case. Recall that this means showing that the relation ~ is reflexive, symi-
melric, and transitive. The proof uses the group action conditions, and it is notable that
the proof that ~¢ has these properties uses the identity, inverses, and closure properties
ofa group, respectively, to do this.

LEMMA 122

he relation ~¢ is an equivalence relation on X.

Proof

We check that ~g has the three necessary properties to be an equivalence relation.
. iﬁ’i“?e—xive: Suppose x € X, Since G is a group, it has an identity element e, and by GA1
= x. [t follows that x ~, x. Therefore ~g; is reflexive.
ASSG}";””rtetr‘ic: Suppose x,y € G and x ~¢ ». Then there is some g€ Gsuch that grx =y,
Hences 4 group, g has an inverse, g1, which is also in G. By Lemma 12.1, g' >y =x.
¥ ~g x. Therefore ~ ; is symmetric.
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Transitive: Suppose x,y,z € X and both x ~5 y and y ~¢ z. Then there aré ghe
such that gbx =y and hey=2z. As G is a group, hg € G, and using GAZ2, we hav;
that hgex=ho (g-x) =hey=2z Hencex ~g 2. Therefore ~ is transitive,

Because ~ is an equivalence relation, it partitions X into disjoint equivalence clagses.
When G is a group of symimetries acting on a set of colorings, these equivalence clagges
are the colorings that we are regarding as being the same. Thus our question aboy,
how many different colorings there are may be restated as asking how many differen;
equivalence classes there are. In this context the standard term for the equivalence

classes is orbits. Here is the formal definition.

DEFINITION 12.3
Let the group G act on a set X. The equivalence classes of the relation ~ ; are called
orbits. For each x € X, we let Orb(x) be the orbit to which x belongs.

Since y € Orb(x) & x ~ ¢ y < for some g € G, grx =y it follows that
Orb(x) = {g> x: g € X}. That is, the orbit of x consists of all the elements of X that

we obtain from x by letting each element of G act on x.
So we are now interested in how to calculate the number of different orbits when a

group acts on a set. Before we can give the theorem that answers this question we need
to develop one more theoretical idea. We do this in the next section,

Exercises

12.3.1A Consider the group action described in Exercise 12.2.1A. Find the orbits of
the points (1,0) and {0,0). _

12.3.1B Find a group action on R?whose orbits are ellipses.

12.3.2A Let Gbe the group, (R;+), of real numbers with addition, and let X =R’. The
action of G of X is defined by: for t€ R, and {x,y) € R?, t> (xy)={x+ty+20.
Show that this satisfies the group action conditions. Find the orbits of the
points (0,0}, (0,1), and (1,2).

12.3.2B Let G be the group, $(00), of symmetries of the square (recall that the Cayley
table of this group is given in Table 11.2). Find the orbits of each element of
G with respect to the group action of conjugation, as described in Exercise

12.2.1B.

12.4 STABILIZERS

Whenever a group G acts on a set X, each element of
G in the sense that ewx = x. This is built into the definitio
GAL. Other elements of G may fix certain elements of X. For e
example of colorings of a 2 x 2 chessboard, the diagonal reflection r fi
ings C1, C2, C4, 'C10, C11, C13, C15, and C16, as these are symmetrica
diagonal. The type of symmetry ofa particular coloring is determined byt
that Jeave it unchanged. We give this set a special name.

Ltof
jon

X is fixed by the identity elemen
n of a group action as condit
xample, in our standan‘j
xes each of the color:
] about the relevan
hose symmetries
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DEFINITION 12.4
et the group Gactonaset X, Foreach x € X, the set of elements of G that fix x is called
the stabilizer of x. We let Stab(x) be the stabilizer of x. Thus

Stab(x) ={ge G grx= x}h

It can be seen that with our example of the group, $(0), of symmetries of a square
acting on the colorings of a 2 X 2 chessboard, the stabilizer of C2 is {e,r}, and that of
C10 is {e,b,7;s}. These are both subgroups of S(7). The next result tells us that this is not

an accident.

LEMMA 12.3
If the group G acts on the set X, then for each x € X, Stab(x) is a subgroup of G.

Proof

We check that Stab(x) satisfies the subgroup conditions.
Closure: Suppose g, € Stab(x), then g x = x and h>x = x. Hence, by GA2, ghr x =
b (> x} = g x = x, and hence gh € Stab(x). So the closure condition is satisfied.
Identity: By GAl, e> x = x, and so e € Stab(x).

TABLE 12.1
Coloring Orbit Stabilizer

Cl {c1} {e,a,b,c,h,v,r,5}

C2 {e,7}

C3 {e.s}
{C2, C3,C4, C5}
C4 {e.r}

C5) {e.s}
Cs {e,v}
7 {e.h}

{Cs, C7, C8, C9}
C3 {e.v}

C9) ‘ {e.f1}

.

fC10, Ci1} {e.b,r.s}

{e.s}
fe,r}
{e,s}

{e.r}
{C18} {e,a.b,c.h,v,r.s}

(Ciz, C13, Cl4, C15}
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Inverses: Suppose g & Stab(x). Then gr-x=x, and so, by Lemma 12.1, g5 o .
Hence g & Stab(x), and the inverses condition is satisfied. A

This completes the proof.

Weare interested in stabilizers because, as we will soon see, they help us to count arhj,
Group theorists are interested in stabilizers for other reasons. As Lemma 12,3 shows, the);
are useful in identifying subgroups. For example, the subgroup {e.b,n,s} of S(*) is not easyp
find from the Cayley table (see Table 11.2), but can easily be identified as Stab(C10),

Once again, it is instructive to return to our example of the group S(00) acting on th,
colorings of a 2 X 2 chessboard. In Table 12.1 we have listed the orbits and the stabiliz.
ers of the colorings.

We see that the larger the orbit then the smaller is the stabilizer. Tndeed, in each casp
#(Orb(x)) x #(Stab(x)) = 8, and 8 is the number of elements in the group S(2). This i
not a coincidence, but an important result that is true in every case of a group action,

THEOREM 12.4
" 'The Orbit-Stabilizer Theorem

If the group G acts on the set X, then for each x € X,
#Orb(x)) x #(Stab{x}} = #(G). (12.1)

Proof
By Lemma 12.3, Stab(x} is a subgroup of G. So Equation 12.1 is similar to the equation

that occurs in our proof of Lagrange’s theorem (Theorem 11.6), namely,

kx #{H) = #Q), ’ (12.2)

where k is the number of different cosets of H.

Comparing Equations 12.1 and 12.2 we see that to prove Equation 12.1 it will be
enough to prove that

#(Orb(x)) = the number of different cosets of Stab(x).

Consequently, we need to show that there is a one-one correspondence between the
elements of Orb{x) and the cosets of Stab{x). Now, Orb(x) = {g>x: g € G}, and the set of
cosets of Stab(x) is {gStab(x): g € G}. We now establish the required one-one correspon-
dence between these sets as follows:

For g,,g; € G, we have that

£ X =g, x & g7'g > x = x, by the result of Exercise 12.2.3A,

& g,7'¢, € Stab(x), by the definition of Stab(x),

< g Stab(x) = gZStab(x), by Lemma 11.4.

‘This establishes the desired correspondence, and so completes the proof of Theorem
12.4. We can immediately deduce the following corollary.
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COROLLARY 12.5
et G be a finite group that acts on a set X. Then the number of elements in each orbit
is a divisor of the order of G.

In particular, in the case of the group action of conjugation of a group on itself,
the number of elements in each orbit, which in this context are also called conjugacy
classes, is a divisor of the number of elements in the group. This is a very useful result

when it comes to analyzing the structure of groups.
As we now see, we can easily deduce from the orbit-stabilizer theorem the following
result, which gives a formula for the number of orbits.
THEOQOREM 12.6
'The Orbit-Counting Theorem
Let G be a finite group that acts on the set X. Then the number of different orbits is
N stabix))
#G) '
xeX
Proof

Suppose that there are k different orbits, Orb(y)),0rb(yy),....Orb(y). For 1 51 = k and
for each x € Orb(y,), Orb(x) = Orb(y,}. Hence, by the orbit-stabilizer theorem,

L #(G) _ #(G)
#(Stab(x))= #(Orb(x))  #(Orb(y, )’

Z #Stab(x)) = Z ?(5%' (12.3)

xe0mb(y,) xe0rb(y,)

[n Equation 12.3 each term in the sum on the right-hand side has the same value, and
there are #(Orb(y,)) terms in this sum. We therefore deduce from Equation 12.3 that

#(G)

T

Z #(Stab(x))= #(Orb(y,))x

x0rb(y,)

Therefore, as X =(J¥, Orb(y,), where for 1 < r<s<k the sets Orb(y,) and Orb(y,)
are digjoint,

k k
2#(3@@)):2{ 2 #(Stab(x))]:E#(G):k#(G).

reX r=1 r=1

xelnbly,)

It f()]l(}\vs that

1
k:#(—Gj; #(Stab(x)).

This completes the proof.
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TABLE 12.2

x Cl Cc2
#{Stab(x)) 8

Is the formula given by this theorem useful? It is easy to use it in our standard
example of the group S(00) acting of the set of colorings of a 2 X 2 chesshoard From
Table 12.1, we obtain Table 12.2 of values of #{Stab(x)).

We thus see that in this case X _ #(Stab(x))=48, and hence, by the orbit‘counting
theorem, there are $+x48=6 different orbits, which agrees with the value we have
already found.

The calculation in this example is deceptively simple. We were able to use the orbjt.
counting theorem because we could easily list the 16 elements of X and work out the
number of elements in their stabilizers. However, in the case we are really interested in,
that of 8 x 8 chessboards, this method is completely impractical. There are 26+ colorings
ofan 8 x 8 chessboard using two colors, and there is no practical way we could list them
all. If we could fit 50 colorings to a page, then we would need just over 10 volumes wiih
360 pages each to list them all. However, although as we move from 2 x 2 chessboards
to 8 x 8 chessboards the number of colorings becomes very large, the group of sym-
metries, ${0), remains the same and still has just eight elements, In the next chapter we
show how this can be exploited.

Exercises

Notfe: In these exercises we show how the theory of group actions can be used 1o
derive some combinatorial theorems about groups. They are not relevant for the rest
of this book. We give only two applications. You will need to consult a book about
groups for more,

12.4.1A We say that two elements, x, y, of a group, (G,e), commuteifxe y =y x,and
that a group is a commutative group if all pairs of its elements commule.

The center of a group, written Z(G), is defined to be the set of all those

elements of the group that commute with every element of the group. That

is, Z(G) = {g & G: forall x € G, gx = xg}. Clearly, for every group G, we have

e, € Z(G). The example of the group of symmetries of an equilateral tri-

angle (as given by Table 11.3) shows that it is possible to have Z(G) = |¢i.

The purpose of this exercise is to show that if #(G) is the power of a prime

number, p, there are at least p elernents in Z(G).

a. Prove that Z(G) is a subgroup of G.

b. Prove that g € Z(G) < the conjugacy class of g is {g}, that s, g is conjugalc
just to itself.

c. Prove that, if for some prime number p and some positive integer 7.
#(G) = p~, then #(Z(G)) 2 p. (Hint: Make use of the remark after Corollary
12.5 that the number of elements in a conjugacy class divides the order
of the group.)

We have noted in exercise 11.3.2B that the converse of Lagrange’s theorem

is not, in general, true. 'That is, if k divides the order of a group, ther¢ need

not be an element of the group of order k (nor even a subgroup of order k)

However, this converse is true when k is a prime number. In this exercise
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you are asked to prove this result, which is due to the French mathemati-
cian Cauchy.*

We start with a group G and suppose that p is a prime number that is a divisor of
#(G). We let X be the set of all ordered p-tuples of elements of G whose product is the
identity element, e, of G. Thus

X={(g G0 8p): 815 8o £, Gand g, g5...8, = ¢}

Recall that Z, is the group of the integers {0,1,..., p—1} with addition modulo p. We
define an action of this group on X by

kv (g 8o es 8 = (G v avevos Sr phs (12.4)
where the addition in the suffices is carried out modulo p.

i. Given that #(G) = n, how many elements are there in X?
ii. Prove that Equation 12.4 defines an action that satisfies the group action
conditions.
iit. Prove that

ke (gp o8 = (g g forallke Z, & g =g,= ... =g,

It follows from (i} that the only orbits containing just one element comprise
those elements of X of the form (g, g,....g). Such a p-tuple is in X, if and only if
g =1, and hence either g = ¢, or gis an element of order p. Thus to prove that
G contajns at least one element of order p you need only show that:
Iv. There is more than one orbit that consists of a single element of X.

: "‘“L‘ugline-i_o

f

nd applied p

3 ll).!n)- of Ihe
i Name,

uis Cauchy was born in Paris on August 21, 1789, and died at Sceaux, near Paris, on May 23, 1857.
remely distinguished and prolific mathematician who made important contributions to both pure
hathematics. He is best remembered as the criginator, along with Gauss, of complex analysis where
standard results, for example, the Cauchy-Riemann equations and Cauchy’s residue theorem, bear
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