Math 353 Homework #9- SOLUTIONS

1. 12.2.2B
The integers Z are acting on G by nt> g = gi'g. So 01> g = gig = eg = g and the first axiom is satisfied.
Let ny,ny € Z. Then :
ny > ng>g=mn1> 9529 =95 90°9 = 90" g = (1 +n2) > g
so the second axiom is satisfied.

2. Let H and K be two subgroups of a group . Prove that their intersection H N K is also a subgroup.
For extra credit prove that the union H U K is never a subgroup except in the trivial situation where
HCKor KCH.

Let z,y € HN K. Since H < G we know 27! and zy are in H. Since K < G we know 2! and xy are
in K. Thus 7! and 2y are in H N K and so H N K is a subgroup.

For the extra credit suppose H and K are subgroups and neither H C K nor K C H. We must show
H U K is not a subgroup. By our assumption we can choose h € H with h ¢ K. Also choose k € K
with k ¢ H. So h,k € HU K and we will show hk ¢ HU K. If hk = h' € H then k = h™'h/ € H, a
contradiction. Similarly if hk = k' € K then h = k™'k’ € K a contradiction. Thus hk is in neither i nor
K, sonotin HUK. Thus H U K is not closed under multiplication, so is not a subgroup.

3. Let G be a group and g € G. Define the centralizer of g, denoted Cg(g), as the elements that commute
with g,namely:
Calg) ={zr € G| zg = gz}.
a. Prove that Cg(g) is a subgroup of G.

b. Let 0 = (1,2)(3,4) € Sy Calculate Cs, (o).
c. Let A= ( (1) 1 ) € GLy(Q). Calculate the centralizer of A.

d. Describe the center Z(G) in terms of centralizers.

3a. First observe eg = ge = g so e € Cg(g). Now suppose z,y € Cg(g) so xg = gz and yg = gy by
definition. Then zyg = zgy = gry so xy € Cg(g). Take the equation xg = gr and multiply both sides
by 7! on the left and on the right we get: gz™' = 2z71g so x7' € Cg(g). Thus Cg(g) is closed under
multiplication and taking inverses so Cg(g) < G.

3b. Cs,(0) = {e, (1,2),(3,4), (1,2)(3,4),(1,3)(2,4), (1,4)(2,3),(1,3,2,4),(1,4,2,3)}. Notice this cen-
tralizer is isomorphic to Dy.
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This gives us 4 equations which we solve to show that ¢ = 0 and a = d. So the centralizer is:

(5 0)1ar

c¢. The matrix < Ccl Z ) is in the centralizer of < ) if and only if it is invertible and:

Multiplying out we get:



2

where the condition on a ensures the matrix is invertible.
d. The center of GG is the intersection of the centralizers of the elements of G.

4. Calculate the conjugacy classes in the dihedral group Dg. Repeat for Dyy.

For Dg you should get:

{e}, {r, 3}, {r?}, {s, sr*}, {sr, sr}.

For Dyy you should get:

{e}, {r, 7“4}, {7’2, 7’3}, {s, sr, sr? 3, sr4}.

Notice all 5 reflections are conjugate for the symmetries of a pentagon whereas for the square there are
two conjugacy classes. Can you see why geometrically?

5. 12.3.2A

See back of book.

6. 12.4.1B

i. To get an element of X we can choose anything we like for (g1, g2, g3, - - ., gp—1). Once we do this our
choice of g, is forced on us, since we need g;9s - - - g, = e then we must choose g, = g;fl gpil2 ---gyt. Thus
X has |G[P~! elements.

ii. It is clear that

O > (917927937' .. 7gp) = (glag2ag3>' .. 7gp) :pl> (91792a937 s 7gp)
so the action of Z,, is well-defined. One easily checks that

&Dbb(glagbgi’n-'wgp) = (&—i—b)b (917927937"'7910)'

Rotating by a and then by b is the same as rotating by a + 0. Finally we need to check that the rotated
tuples are still in X. Multiply the equation

9192 -gp = €
by g; ! on the left and right to get:

9293 " gpg1 = €.
Repeating with gy etc... shows us that all the cyclic permutations remain in X.

If any g; # g; then rotating by j —¢ will move g; into the j position and so we will have a different tuple.
Thus the only elements fixed by all of Z, are tuples of the form (g,9,9,...,9).

iii. We know from the orbit stabilizer theorem that all the orbits have order dividing the order of Z,.
We know from part i that X is a multiple of p. Since we have an orbit (e, e, ..., e) of size 1, there must be
at least p — 1 other orbits of size 1. But orbits of size one are tuples (g, g, ..., g) with ¢ = e. Thus G has
at least p — 1 elements of order p.

7. Let G = Sy be the symmetric group on 4 letters. Let H = {e, (12)(34), (13)(24), (14)(23)} and let
K = {e,(12),(34),(12)(34)}. Verify that H and K are both subgroups of S; and both are isomorphic to
the Klein 4 group. Next compute the left and right cosets of H. Repeat for K. What do you notice?



Left and right cosets of H are the same:
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