
Math 353 Homework #9- SOLUTIONS

1. 12.2.2B
The integers Z are acting on G by nB g = gn0 g. So 0 B g = g00g = eg = g and the first axiom is satisfied.
Let n1, n2 ∈ Z. Then :

n1 B n2 B g = n1 B gn2
0 g = gn1

0 g
n2
0 g = gn1+n2

0 g = (n1 + n2) B g

so the second axiom is satisfied.

2. Let H and K be two subgroups of a group G. Prove that their intersection H ∩K is also a subgroup.
For extra credit prove that the union H ∪ K is never a subgroup except in the trivial situation where
H ⊆ K or K ⊆ H.

Let x, y ∈ H ∩K. Since H ≤ G we know x−1 and xy are in H. Since K ≤ G we know x−1 and xy are
in K. Thus x−1 and xy are in H ∩K and so H ∩K is a subgroup.

For the extra credit suppose H and K are subgroups and neither H ⊆ K nor K ⊆ H. We must show
H ∪ K is not a subgroup. By our assumption we can choose h ∈ H with h /∈ K. Also choose k ∈ K
with k /∈ H. So h, k ∈ H ∪ K and we will show hk /∈ H ∪ K. If hk = h′ ∈ H then k = h−1h′ ∈ H, a
contradiction. Similarly if hk = k′ ∈ K then h = k−1k′ ∈ K a contradiction. Thus hk is in neither h nor
K, so not in H ∪K. Thus H ∪K is not closed under multiplication, so is not a subgroup.

3. Let G be a group and g ∈ G. Define the centralizer of g, denoted CG(g), as the elements that commute
with g,namely:

CG(g) = {x ∈ G | xg = gx}.
a. Prove that CG(g) is a subgroup of G.
b. Let σ = (1, 2)(3, 4) ∈ S4 Calculate CS4(σ).

c. Let A =

(
1 1
0 1

)
∈ GL2(Q). Calculate the centralizer of A.

d. Describe the center Z(G) in terms of centralizers.

3a. First observe eg = ge = g so e ∈ CG(g). Now suppose x, y ∈ CG(g) so xg = gx and yg = gy by
definition. Then xyg = xgy = gxy so xy ∈ CG(g). Take the equation xg = gx and multiply both sides
by x−1 on the left and on the right we get: gx−1 = x−1g so x−1 ∈ CG(g). Thus CG(g) is closed under
multiplication and taking inverses so CG(g) ≤ G.

3b. CS4(σ) = {e, (1, 2), (3, 4), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3), (1, 3, 2, 4), (1, 4, 2, 3)}. Notice this cen-
tralizer is isomorphic to D8.

c. The matrix

(
a b
c d

)
is in the centralizer of

(
1 1
0 1

)
if and only if it is invertible and:(

a b
c d

)(
1 1
0 1

)
=

(
1 1
0 1

)(
a b
c d

)
.

Multiplying out we get: (
a a+ b
c c+ d

)
=

(
a+ c b+ d
c d

)
.

This gives us 4 equations which we solve to show that c = 0 and a = d. So the centralizer is:

{
(
a b
0 a

)
| a 6= 0}
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where the condition on a ensures the matrix is invertible.
d. The center of G is the intersection of the centralizers of the elements of G.

4. Calculate the conjugacy classes in the dihedral group D8. Repeat for D10.

For D8 you should get:

{e}, {r, r3}, {r2}, {s, sr2}, {sr, sr3}.
For D10 you should get:

{e}, {r, r4}, {r2, r3}, {s, sr, sr2, r3, sr4}.
Notice all 5 reflections are conjugate for the symmetries of a pentagon whereas for the square there are

two conjugacy classes. Can you see why geometrically?

5. 12.3.2A

See back of book.

6. 12.4.1B

i. To get an element of X we can choose anything we like for (g1, g2, g3, . . . , gp−1). Once we do this our
choice of gp is forced on us, since we need g1g2 · · · gp = e then we must choose gp = g−1p−1g

−1
p−2 · · · g−11 . Thus

X has |G|p−1 elements.

ii. It is clear that

0 B (g1, g2, g3, . . . , gp) = (g1, g2, g3, . . . , gp) = pB (g1, g2, g3, . . . , gp)

so the action of Zp is well-defined. One easily checks that

aB bB (g1, g2, g3, . . . , gp) = (a+ b) B (g1, g2, g3, . . . , gp).

Rotating by a and then by b is the same as rotating by a + b. Finally we need to check that the rotated
tuples are still in X. Multiply the equation

g1g2 · · · gp = e

by g−11 on the left and right to get:

g2g3 · · · gpg1 = e.

Repeating with g2 etc... shows us that all the cyclic permutations remain in X.

If any gi 6= gj then rotating by j− i will move gi into the j position and so we will have a different tuple.
Thus the only elements fixed by all of Zp are tuples of the form (g, g, g, . . . , g).

iii. We know from the orbit stabilizer theorem that all the orbits have order dividing the order of Zp.
We know from part i that X is a multiple of p. Since we have an orbit (e, e, . . . , e) of size 1, there must be
at least p− 1 other orbits of size 1. But orbits of size one are tuples (g, g, . . . , g) with gp = e. Thus G has
at least p− 1 elements of order p.

7. Let G = S4 be the symmetric group on 4 letters. Let H = {e, (12)(34), (13)(24), (14)(23)} and let
K = {e, (12), (34), (12)(34)}. Verify that H and K are both subgroups of S4 and both are isomorphic to
the Klein 4 group. Next compute the left and right cosets of H. Repeat for K. What do you notice?
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Left and right cosets of H are the same:

eH = He = {e, (12)(34), (13)(24), (14)(23)}
(12)H = H(12) = {(12), (34), (1324), (1423)}
(13)H = H(13) = {(13), (1234), (24), (1432)}
(14)H = H(14) = {(14), (1243), (1342), (23)}

(123)H = H(123) = {(123), (134), (243), (142)}
(124)H = H(124) = {(124), (143), (132), (234)}

Left cosets of K are:

eK = {e, (12), (34), (12)(34)}
(13)K = {(13), (123), (134), (1234)}
(14)K = {(14), (124), (143), (1243)}
(24)K = {(24), (142), (243), (1432)}
(23)K = {(23), (132), (234), (1342)}

(13)(24)K = {(13)(24), (1423), (1324), (14)(23)}
Right cosets of K are:

Ke = {e, (12), (34), (12)(34)}
K(13) = {(13), (132), (143), (1432)}
K(23) = {(23), (123), (243), (1243)}
K(24) = {(24), (124), (234), (1234)}
K(14) = {(14), (142), (134), (1342)}

K(13)(24) = {(13)(24), (1324), (1423), (14)(23)}


