
Math 353 Homework #5- Due Wednesday 10/5/16

1. 5.1.6B Let’s define X(n, k) to be all the possible products of n − k integers taken from {1, 2, . . . , k}, repeats
allowed. We must show that for 1 ≤ k < n that ∑

a∈X(n,k)

a = S(n, k).

We proceed by induction on n. It’s easy to see that X(2, 1) = {1} and S(2, 1) = 1 so the base case holds.

Now divide X(n, k) into two subsets. The first, call it A, is the products that do not include the integer k. The
second, call it B, are the products including k. Now A is all products of n−k integers taken from {1, 2, . . . , k− 1}
so by induction the elements in A add up to S(n− 1, k − 1). Each element of B is of the form k ∗ y where y is a
product of n− k − 1 integers taken from {1, 2 . . . , k}. So by induction the elements in B add up to kS(n− 1, k).
Since X(n, k) = A tB we have: ∑

a∈X(n,k)

a = S(n− 1, k − 1) + kS(n− 1, k)

which equals S(n, k) by Theorem 3.4.

2. 5.2.3B (typo in the book here, should be s(n, r) not S(n, r).)
The Stirling number s(n+ 1, k+ 1) is the absolute value of the coefficient of xk+1 in [x]n+1. Cancelling the first

x we see it is the coefficient of xk in (x− 1)(x− 2) · · · (x− n). Now do the substitution y = x− 1. Then:

(x− 1)(x− 2) · · · (x− n) = y(y − 1)(y − 2) · · · (y − n+ 1) = [y]n.

Thus s(n+ 1, k + 1) is the coefficient of xk in [y]n. However by definition we have

(1) [y]n =
n∑

r=1

(−1)r−1s(n, r)yr =
n∑

r=1

(−1)r−1s(n, r)(x− 1)r.

Notice there is no xk term in (??) until r = k and the coefficient of xk in (x−1)r is (−1)r−k
(
r
k

)
, by the binomial

theorem. So the coefficient of xk in (??) is:

n∑
r=k

(−1)r−1s(n, r)(−1)r−k
(
r

k

)
= (−1)−1−k

n∑
r=k

s(n, r)

(
r

k

)
.

So taking absolute value we get:

s(n+ 1, k + 1) =

n∑
r=k

(
r

k

)
s(n, r)

as desired. Note: I have not been able to find a combinatorial proof but there must be one!

3. This is an easy induction proof, d0 = C0 = 1. Now suppose di = Ci for i < n. Then:

dn =

n∑
k=1

dk−1dn−k =

n∑
k−1

Ck−1Cn−k

by the inductive hypothesis. But the latter sum is just Cn since Cn satisfies the same recursion formula.

4.
a. In one-line notation the 231 avoiding permutations in S4 are:

{1234, 1324, 2134, 3124, 3214, 1243, 2143, 1423, 1432, 4123, 4132, 4213, 4312, 4321}.
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b. Let An be the number of 231-avoiding permutations in Sn. Let 1 ≤ k ≤ n and consider the set of 231-avoiding
permutations in Sn with σ(k) = n. So in one line notation σ looks like:

???????n ∗ ∗ ∗ ∗ ∗ ∗∗
where there are k−1 question marks and n−k stars. The question marks must represent the numbers 1, 2, . . . , k−1
and the stars are k, k+ 1, . . . , n− 1, because as soon as a number ≤ k− 1 appears to the right of n then a number
≥ k will be to the left and the forbidden 231 pattern appears.

Thus σ is 231 avoiding if the question marks form a 231 avoiding permutation of {1, 2, . . . , k− 1} and the stars
form a 231 avoiding permutation of {k, k + 1, . . . , n− 1}. There are Ak−1An−k choices (where A0 is defined to be
1). This proves that:

An =
n∑

k=1

Ak−1An−k.

Since A0 = A1 = 1, the previous problem proves An = Cn.

5. 5.3.2B. Hints below.

• First use the recursion to prove that Cn > n+ 2 for n > 3.
• Next prove from the definition that (n+ 2)Cn+1 = (4n+ 2)Cn

• Suppose Cn is prime. Prove that Cn divides Cn+1.
• Prove that n must then be ≤ 4.

Proof: We have the recursion:
Cn = C0Cn−1 + C1Cn−2 + · · ·+ Cn−1C0.

The RHS has n terms and once n > 3 we know two of them at least are > 1. This implies that for n > 3 that
Cn > n+ 2.

Now from the definition Cn =
(2nn )
n+1 it follows that:

Cn+1 =

(
2n+2
n+1

)
n+ 2

=

(2n+2)!
(n+1)!(n+1)!

n+ 2

=
(2n+ 2)(2n+ 1)(2n)!

(n+ 1)(n+ 1)n!n!(n+ 2)

=
(4n+ 2)(2n!)

(n+ 1)(n+ 2)n!n!

=
4n+ 1

n+ 2
Cn

Now assume Cn is prime. From above we have that (n+ 2)Cn+1 = (4n+ 2)Cn. Since we know Cn > n+ 2, then
Cn must divide Cn+1 since it cannot divide n+ 2. So Cn+1 = kCn for some k. This gives:

4n+ 2 = k(n+ 2)

which is impossible if k ≥ 4. So k = 1, 2, 3 which forces n to be ≤ 4. Thus the only prime Catalan numbers are
C2 and C3.

6. See back of the book


