Math 353 Homework #10- Due Tuesday 11/22/16

1. 13.2.1B

The regular octagon has 16 symmetries. Let r be the clockwise rotation by /4, so there are 8 rotations,
namely {e,r%, 7% ... r".} There are 8 reflections, 4 of them have axes connecting midpoints of opposite
sides, and 4 have axes connecting opposite corners. For each of the 16 elements we need to calculate
the cycle structure on the 8 vertices. For example 72 has cycle structure (4,4), i.e. two 4 cycles. The
first reflections have cycle structure (2,2,2,2) and the second type have structure (2,2,2,1,1), since two
vertices are fixed. We have:

symmetry cycle structure on vertices
e (1,1,1,1,1,1,1,1)
r.r3, o r’ (8)
20 (4.4
r 2,2,2.2
midpoint reflections (x4) (2,2,2,2)
vertex reflections(x4) (2,2,2,1,1)

Using Frobenius Theorem we get that the number of patterns is:

1 1
E(CS +de+ 262 + A+ 4ct F4°) = E<68 +4c + 2% + 5t + 4cP).

2. 13.2.2B (Hint: The symmetries of the object in Figure 13.5 are the same as the symmetries of a square)

This is similar to the previous problem, we have 8 symmetries and for each we need to figure out how
many orbits there are on the 45 tiny squares in the picture. The identity has 45 orbits, contributing ¢*
The rotations r and r® fix the center square and the rest are in 11 4-cycles, so 12 orbits, contributing c'2.
The rotation 72 fixes the center square and the rest are in 22 2-cycles, so 23 orbits and a contribution of
¢®. The horizontal and vertical reflections fix 9 squares and the rest are in 18 2-cycles, so contributes ¢*".
Finally the two diagonal reflections fix 3 squares and have 21 2-cycles, for a contribution of ¢**. Thus the

total for ¢ colors:
1
§(645 9612 1 (23 4 9027 2024)‘

Plug in ¢ = 3 to get the answer.



2

3. 13.2.4B

Recall the rotational symmetries of a tetrahedron. Of course there is the identity. Fach corner can be
fixed and the opposite side rotated 120 degrees either way, so this gives 8 symmetries of order 3. Finally
for each pair of opposite sides there is a 180 degree rotation with axis connecting the midpoints.

So for each type we need to figure out the action on the 16 small triangles. The identity fixes them all,
so contributes ¢'%. The 8 rotations through 1/3 turn have 1 triangle fixed (center of the opposite face) and
the other 15 are in 5 3-cycles, so we get a contribution of 8c°. Finally the 3 180 degree rotations interchange
pairs (none is fixed), so we get 8 2-cycles and a contribution of 3¢®. The final answer then is:

1
E(c16 + 8¢% + 3¢%).

4. Suppose we want to place 4 red, two yellow and two green keys on a circular key ring. Use Burnside’s
Theorem to count the number of ways to do this.

Since we can put our keys at the vertices of a regular octagon, the symmetry group here is Dg. To use
Burnside’s theorem we need to calculate |Fiiz(g)| for each of the 8 elements acting on all possible colorings
with 4 red, two yellow and two green keys. So we have the same elements as in 13.2.1B but now with a
more difficult computation of fixed points.

g cycletype |Fiz(g)|
A oop-m
el Ts 0
72,70 x2 0
r T3 (i?i) (i) =12
s, 512, 574, 510 T () (]) =12
sr, sr3, sr®, sr’ 2z 6+4+6=12

The last line 6+6 comes as follow. If the two one-cycles are not red there are two choices (yellow or

green) and then (g) choices for which two of the 3 two-cycles are red. If the two one-cycles are red then

there are 3 choices for the red 2-cycle, then 2 choices for the yellow 2-cycle.

So the Frobenius Theorem says the number of orbits is:

1
§(420+12—|—4*12+4*12):66.

5. Find the number of different colorings of a cube with two white, one black and three red faces.



This problem was done in class.

6. How many different chemical compounds can be made by attaching H, C'Hs, CyHs or Cl radicals to
the four bonds of a carbon atom. (The radicals lie at the vertices of a regular tetrahedron with the carbon
atom in the center).

This problem is equivalent to coloring the vertices of a tetrahedron with 4 colors. The rotational
symmetry group has 8 elements, each of them with cycle type (3, 1) on the vertices. There are 3 180 degree
rotations, with cycle type (2,2). So applying Burside’s theorem we have 42 fixed point for each, and 4* for
the identity. Thus the answer is:

444 11-42

B 36.

7. Give a simple proof of Cauchy’s theorem for p = 2. (Hint: pair up)

We are looking to show there is a non-identity element of order two, i.e. ¢g> = e. This is the same as
finding an element g # e with ¢ = ¢g~!. Suppose there is not. Then the group consists of the identity
together with pairs g # ¢! which would result in an odd number of elements. So if |G| is even there must
be another element not equal to e which is its own inverse.

8. Suppose H is a subgroup of G and g € GG. Let:
gHg™' ={ghg™" | he H}

a. Prove that gHg™! is also a subgroup.
Choose two arbitrary elements of gHg™!, call them gh;g~! and ghog~'. Multiply them we get:

ghig™ ghag™ = ghihag™' € gHg ™
since hihy € H because H is a subgroup. Also:

(ghig™)™' =ghi'g™ € gHg™
since h;* € H because H is a subgroup. Finally note that e = geg™".

b. Let X be the set of all subgroups of G. Prove that GG acts on X by conjugation, as in part a.

So define g > H = gHg ', which is another subgroup of G by part a. Since ehe = h it is clear that
e> H = H as desired. For the second axiom observe that:

91> (g2 H) = g15 (92Hgy ) = 9192H gy 97 = (9192) H(g192) " = g192 > H.



c. The stabilizer of a subgroup H under this action is called the normalizer:

Ne(H)={g€G|gHg™" = H.}
Let G =S, and H = ((1,2,3,4)) be a cyclic subgroup of order 4. Determine the normalizer of H.

Ns,(H) ={e,(1,2,3,4),(1,3)(2,4),(1,4,3,2),(1,4)(2,3), (1,2)(3,4),(2,4), (1,3) }.
As a way to see this notice that H is always in its normalizer. Also:

(1,3)(2,4)(1,2,3,4)(1,4)(2,3) = (4,3,2,1) = (1,2,3,4) "
which proves that (1,4)(2,3) is in the normalizer. The other 3 elements we get by multiplication.



