The exam will cover from Chapter 2-7.5 plus other things done in class.

Definitions: You should know how these quantities are defined and be able to calculate them in small cases:

- $\quad P(n, r)=n!/(n-r)!-$ the number of ways to make an ordered list of length r from an n element set.
- $C(n, r)-$ The binomial coefficient, equal to the number of r element subsets of an n element set.
- Multinomial coefficients.
- $S(n, r)$ - Stirling number of the $2^{\text {nd }}$ kind, the number of ways to put n distinct balls in r identical boxes with no empty boxes.
- $s(n, r)$ - Stirling number of the $1^{\text {st }}$ kind, the coefficient of x^{r} in $[x]_{n}$.
- $p(n, r)$ - The number of permutations in S_{n} with exactly r cycles ($=s(n, r)$ by theorem)
- Derangements
- C_{n} - the Catalan numbers, including the various objects they count, Dyck paths, triangulations, expressions, etc..
- $p(n), p_{k}(n)$,
- Ferrer's diagrams of partitions
- Generating function of a sequence
- Recurrence relation and Fibonacci numbers
- Permutations avoiding a certain pattern (e.g. 231 on the homework)

Counting Problems:

- Counting and probability problems using principle of multiplication of choice, $C(n, r)$ and $P(n, r)$, knowing when each applies (does order matter, overcounting, etc...). The binomial theorem. (for example Ex: 2.2.1-2.2.3, 2.3.12.3.3, all exercises in 2.4) Poker/bridge type problems.
- Counting the number of permutations in S_{n} with a given cycle structure.
- 8 different "occupancy problems" in Table 3.1, know when to apply each.
- Simple combinatorial proofs using binomial coefficients (like 2.3.3B, 2.3.4A)

Other material

- You should know the recurrence relations for $C(n, r), S(n, r)$ and $s(n, r)$ and combinatorial explanations for the first two. Pascal's triangle.
- Understand how $S(n, r)$ and $s(n, r)$ are change of basis coefficients between two natural bases for polynomials of degree n with no constant term.
- Know the inclusion/exclusion principle and apply it in counting problems. You do not need to know the formula on the top of $p .56$ but you should be able to figure it out in small examples using I/E principle. For example the argument on p. 55 you should be able to replicate.
- Same thing for the formula for the number of derangements.
- Easy combinatorial proofs involving partitions.
- Solve a linear recurrence relation.
- Write down generating functions for some simple sequences.
- Write down and multiply permutations in cycle notation, one-line, two-line notation.
- Recurrence relation satisfied by the Catalan numbers and how it is applied to show they count 231-avoiding permutations and triangulations.

[^0]
[^0]: *Review all homework solutions and quizzes.

