Name:

SOLUTIONS

241S1 Quiz #4 - October 6, 2015, 10 a.m.

1. Use implicit differentiation to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial t}$ when $x^2 + 2y^2 + 3z^2 = 1$.

2x+0+62 = 0

0+44 th +62 d2=0

,		
$\frac{\sqrt{2}}{\sqrt{x}}$	-2X 6Z	
JZ =	-44 62	

2. State Clairaut's theorem.

Secessam# 1 Sulchans

Name:

241S1 Quiz #4 - October 6, 2015, 10 a.m.

1. Use implicit differentiation to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial t}$ when $x^2 + 2y^2 + 3z^2 = 1$.

2. State Clairaut's theorem.

SOLVIION

241S3 Quiz #4 - October 8, 2015, 10 a.m.

1. If $z = f(x, y) = x^2 + 3xy - y^2$ find the differential dz.

 $f_X = \lambda X + 3y$ fy= 3x-dy

dZ = (2x+34)dx + (3x-24)dz

2. Let $f(x,y) = x^2 e^y$. Find the linearization of f(x,y) at the point .(1,0)

 $f_{x}= \lambda x e^{y}$ $f_{y}= x^{2}e^{y}$ $f_{x}[l_{y}0]=2$ $f_{y}[l_{y}0]=1$

Z-1=2(X-1)+1(Y) 2X+Y-Z=1

241S3 Quiz #4 - October 8, 2015, 10 a.m.

1. If $z = f(x, y) = x^2 + 3xy - y^2$ find the differential dz.

2. Let $f(x,y) = x^2 e^y$. Find the linearization of f(x,y) at the point .(1,0)

Name:

241S2 Quiz #4 - October 8, 2015, 11 a.m.

1. Find the equation of the tangent plane to the graph of $z = 3x^2 + 2y$ at the point (1, 1, 5).

$$|Z-5=6(X-1)+2(Y-1)|$$

6X+2Y-Z=3

2. Find the intersection of this tangent plane with the line $\vec{r}(t) = (t, t+1, 2t+2)$.

Name:

241S2 Quiz #4 - October 8, 2015, 11 a.m.

1. Find the equation of the tangent plane to the graph of $z = 3x^2 + 2y$ at the point (1, 1, 5).

2. Find the intersection of this tangent plane with the line $\vec{r}(t) = (t, t+1, 2t+2)$.