₹ 14 \ 4 □ .	SOLVTIONS
NAME:	1010-

Flip over and put name on back of exam also

Problem #	Points	Score
1	20	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
Total	100	

Math 241S- Midterm Exam #2 - November 10, 2015

Instructions: You may not use any outside help, including notes, index cards, electronic devices or your neighbor!

1. (20 points) Short answer, very limited partial credit.

a. Suppose $f(x,y) = x^2y + 3y$. Find the directional derivative of f(x,y) at the point (2,3) in the direction of the vector $\vec{v} = (1,2)$.

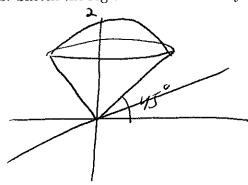
$$\nabla f = (\partial_x y, \chi^2 + 3) \quad \nabla f(\partial_x 3) = (\partial_x 7)$$

$$\hat{U} = \frac{\hat{V}}{|\hat{U}|} = (\partial_x 7)$$

$$\nabla f(\partial_x 3) \cdot \hat{U} = (\partial_x 7)$$

$$\nabla f(\partial_x 3) \cdot \hat{U} = (\partial_x 7)$$

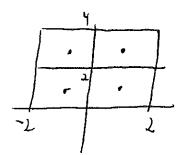
b. Sketch the region in \mathbb{R}^3 describe by the spherical equations $0 \le \phi \le \pi/4$ and $0 \le \rho \le 2$.



c. Let f(x, y, z) = xyz. Calculate the gradient ∇f .

d. Let
$$R$$
 be the rectangle: $\{(x,y) \mid -2 \le x \le 2, 0 \le y \le 4\}$. Estimate
$$\iint_R x^2 y \ dA$$

using a Riemann sum with 4 rectangles (i.e. m = n = 2) and using the midpoint rule.



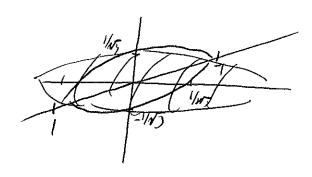
$$\left(f(-1,1) + f(1,1) + f(-1,3) + f(1,3)\right), 9$$

$$= \left(1 + 1 + 3 + 3\right) 9 = 32$$

e. Describe and give a rought sketch of the region E in \mathbb{R}^3 that makes

$$\iiint_{E} 1 - x^2 - 2y^2 - 3z^2 dV$$

as large as possible.



ellipsoid

2. (10 points) Let $z = (x-y)^5$, $x = s^2t$, $y = st^2$. Use the Chain Rule to find $\partial z/\partial s$. Express your answer in terms of s and t

$$\frac{\partial Z}{\partial s} = \frac{\partial Z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial Z}{\partial y} \frac{\partial y}{\partial s}$$

$$= 5(x-y)^{y} \cdot 2st - 5(x-y)^{y} (t^{2})$$

$$= \sqrt{5}(s^{2}t-st^{2})^{y} (2st-t^{2})$$

3. (10 points) Let $f(x,y) = xe^y$. Find the maximum and minimum value for f(x,y) subject to the constraint $x^2 + y^2 = 2$.

Mse Lagrange Mult

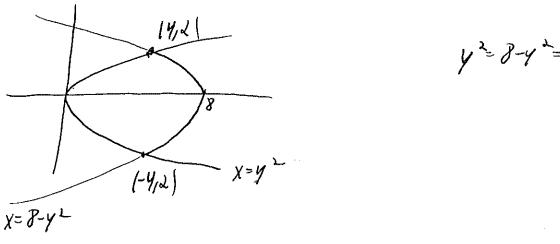
$$abla f = (e^{y}, xe^{y}) \quad
abla g = (2x,2y) \quad
abla c$$
 $abla f = (e^{y}, xe^{y}) \quad
abla g = (2x,2y) \quad
abla c$
 $abla f = (e^{y}, xe^{y}) \quad
abla g = (2x,2y) \quad
abla c$
 $abla f = (e^{y}, xe^{y}) \quad
abla c$
 $abla$

$$f(x,y) = 3x - x^3 - 2y^2 + y^4.$$

Find the critical points for f(x, y) and use the second derivative test to classify each as a local max, min or saddle points.

5. (10 points) Find the equation of the tangent plane and normal line to the surface $xy^2z^3 = 8$ at the point (2,2,1). |eve| | |cuve| | |F=8|, $|F=xy|^2z^3$ $|\nabla F| | |s| | |t| | |cuve|$ $|\nabla F| = |(y|^2z^3) | |2xy|^2z^3|$ $|\nabla F| | |(2,2,1)| = |(4,8,2,4)|$ $|\nabla F| | |(2,2,1)| = |(4,8,2,4)|$ $|\nabla F| | |(2,2,1)| = |(4,8,2,4)|$ $|\nabla F| | |(2,2,1)| = |(4,8,2,4)|$ Normal line $|\nabla f| | |(2,2,1)| + |t| |(4,8,2,4)|$

6. (10 points) Let D be the region in the first quadrant bounded by the parabolas $x=y^2$ and $x = 8 - y^2$. Find the area of D.



$$Area = \begin{cases} 5 \\ 2 \\ 4 \end{cases} = \begin{cases} 3 \\ 2 \\ 4 \end{cases} = \begin{cases} 3 \\ 2 \\ 4 \end{cases} = \begin{cases} 3 \\ 3 \\ 4 \end{cases} = \begin{cases} 3 \\ 4 \end{cases} = \begin{cases} 3 \\ 4 \\ 4 \end{cases} = \begin{cases} 3 \end{cases} = \begin{cases} 3 \\ 4 \end{cases} = \begin{cases} 3 \\ 4 \end{cases} = \begin{cases} 3 \end{cases} = \begin{cases} 3 \\ 4 \end{cases} = \begin{cases} 3 \end{cases} = \begin{cases} 3 \\ 4 \end{cases} = \begin{cases} 3 \end{cases} = \begin{cases} 3 \\ 4 \end{cases}$$

Final answer should be 32/3 and I should only have integrated from 0 to 2 since the problem says first quadrant!

$$= 32 - \frac{31}{3} = \frac{64}{3}$$

7. (10 points) Let H be the solid hemisphere that lies above the xy-plane, has center (0,0,0) and radius 1. Evaluate:

$$\iiint_H z\sqrt{x^2 + y^2 + z^2} \, dV.$$

$$0 \leq \emptyset \leq \frac{n}{\lambda}$$

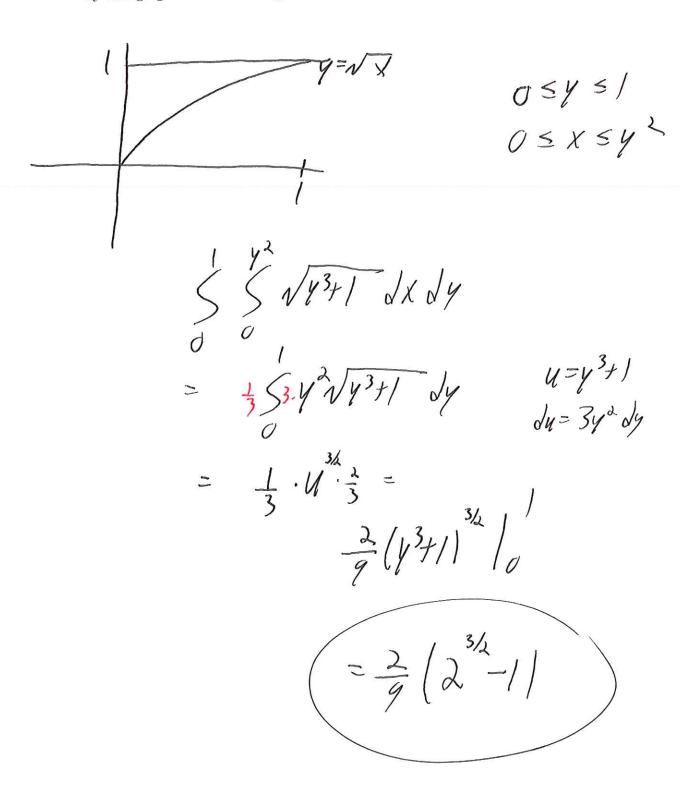
$$= \frac{2\pi}{5} \frac{\pi k}{5} \frac{P}{5} \sin \theta \cos \theta \Big|_{p=0} d\theta d\theta$$

$$= \frac{1}{5} \int_{0}^{2\pi} \frac{\sin^2 q}{d} \Big|_{0=0}^{\pi h} dQ$$

8. (10 points) Evaluate

$$\int_0^1 \int_{\sqrt{x}}^1 \sqrt{y^3 + 1} \ dy dx$$

by changing the order of integration.



9. (10 points) Let R be the top half of the disc of radius 2 centered at the origin, i.e.:

$$0 \le x^2 + y^2 \le 4$$
$$0 \le y$$

Let f(x,y) = y. Calculate the average value of the function f(x,y) on the region D.

Area
$$R = \frac{1}{3}Nr^2 = \lambda N$$

Avy value = $\frac{1}{AreaR}$ $SSY dA$ do in polar!

$$SSY dA = \frac{1}{3}SINOJO = SSINOJO = SSINOJO = SSINOJO = SISSINOJO = SI$$

Avg value =
$$\frac{16/3}{2\pi}$$
 $\frac{8}{377}$

NAME: