Math 241S- Midterm \#2- November 10, 2015

Flip over and put name on back of exam also

Problem \#	Points	Score
1	20	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
Total	100	

Instructions: You may not use any outside help, including notes, index cards, electronic devices or your neighbor!

1. (20 points) Short answer, very limited partial credit.
a. Suppose $f(x, y)=x^{2} y+3 y$. Find the directional derivative of $f(x, y)$ at the point $(2,3)$ in the direction of the vector $\vec{v}=(1,2)$.

$$
\begin{gathered}
\nabla f=\left(2 x y, x^{2}+3\right) \quad \nabla f(2,3)=(12,7) \\
\left.\vec{u}=\frac{\vec{k}}{\overrightarrow{10}=(1 / \sqrt{5}} 2 / 1 / \sqrt{3}\right) \\
\nabla f(2,3) \cdot \vec{u}=(26 / \sqrt{5}
\end{gathered}
$$

b. Sketch the region in \mathbb{R}^{3} describe by the spherical equations $0 \leq \phi \leq \pi / 4$ and $0 \leq \rho \leq 2$.

c. Let $f(x, y, z)=x y z$. Calculate the gradient ∇f.

$$
\nabla f=(y z, x z, x y)
$$

d. Let R be the rectangle: $\{(x, y) \mid-2 \leq x \leq 2,0 \leq y \leq 4\}$. Estimate

$$
\iint_{R} x^{2} y d A
$$

using a Riemann sum with 4 rectangles (ie. $m=n=2$) and using the midpoint rule.

$$
\Delta A=2 \times 2=4
$$

$$
\begin{aligned}
& (f(-1,1)+f(1,1)+f(-1,3)+f(1,3)) \cdot 4 \\
& =(1+1+3+3) y=32
\end{aligned}
$$

e. Describe and give a rought sketch of the region E in \mathbb{R}^{3} that makes

$$
\iiint_{E} 1-x^{2}-2 y^{2}-3 z^{2} d V
$$

as large as possible.

$$
x^{2}+2 y^{2}+3 z^{2} \leq 1
$$

ellipsoid
2. (10 points) Let $z=(x-y)^{5}, x=s^{2} t, y=s t^{2}$. Use the Chain Rule to find $\partial z / \partial s$. Express your answer in terms of s and t

$$
\begin{aligned}
\frac{\partial z}{\partial s} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \\
& \left.=5(x-y)^{y} \cdot 2 s t-5(x-y)^{y} / t^{2}\right) \\
& =5\left(s^{2} t-s t^{2}\right)^{y}\left(2 s t-t^{2}\right)
\end{aligned}
$$

3. (10 points) Let $f(x, y)=x e^{y}$. Find the maximum and minimum value for $f(x, y)$ subject to the constraint $x^{2}+y^{2}=2$.

Use Lagrange Mut

$$
\nabla f=\left(e^{y}, x e^{y}\right) \quad \nabla g=|2 x, 2 y| \quad \text { so }
$$

$$
\begin{array}{ll}
e^{y}=2 \lambda x & \text { If } \lambda=0 \text { then } e^{y}=0 \text { 友 } \\
x e^{y}=2 \lambda y & e^{y=0}=2 \lambda x=2 \lambda \frac{y}{x} \\
x^{2}+y^{2}=2 & \text { so } x=\frac{y}{x^{2}} \Rightarrow y=x^{2} \\
y+y^{2}=2 & \\
y^{2}+y-2=0 & (y+2) \left\lvert\, y-11=0 \Rightarrow \begin{array}{l}
y=-\alpha \\
y=1
\end{array}\right.
\end{array}
$$

$y=-2$ gives no soluticur $t x^{2}+y^{2}=2$
$y=($ gives $x= \pm)$
$\left.\begin{aligned} & \text { point } \mid t \\ & (1,1) \\ & e \\ & (-1,1)\end{aligned} \right\rvert\,-e$ max value $e \quad<$ min value $-e$.
4. (10 points) Let
$f(x, y)=3 x-x^{3}-2 y^{2}+y^{4}$.
Find the critical points for $f(x, y)$ and use the second derivative test to classify each as a local max, min or saddle points.

$$
\begin{aligned}
& \nabla f=\left(3-3 x^{2},-4 y+4 y^{3}\right) \quad \text { set }=(0,0) \\
& x= \pm 1 \quad y= \pm \text { loo } 0 \quad 6 \text { points. } \\
& f_{x x}=-6 x \quad f_{y y}=12 y^{2}-y \quad f_{x y}=0 \\
& D=(-6 x)\left(\left(2 y^{2}-4\right)\right.
\end{aligned}
$$

point	D	$t_{x x}$	classify
$(1,1)$	-48		saddle
$(1,-11$	-48		saddle
$(1,0)$	24	-6	local max
$(-1,1)$	48	6	local min
$(-1,-1)$	48	6	local min
$(-1,0)$	-24		saddle

5. (10 points) Find the equation of the tangent plane and normal line to the surface $x y^{2} z^{3}=8$ at the point $(2,2,1)$. Leve/culve, $F=8, F=x y^{2} Z 3$ $D F$ is \perp to lew curve.

$$
\begin{aligned}
& \nabla F=\left(y^{2} z^{3}, 2 x y z 3,3 x y^{2} z^{2}\right) \\
& \nabla F(2,2,1)=(y, 8,24) \\
& \quad 4 x+8 y+24 z=48
\end{aligned}
$$

Normal line $\quad \vec{r}(t)=(2,2,1)+t(4,8,24)$
6. (10 points) Let D be the region in the first quadrant bounded by the parabolas $x=y^{2}$ and $x=8-y^{2}$. Find the area of D.

$$
y^{2}=8-y^{2} \Rightarrow y= \pm 1
$$

Final answer should be $32 / 3$ and I should only have integrated from 0 to 2 since the problem says first quadrant!

$$
\begin{aligned}
\int_{-2}^{2} \int_{y^{2}}^{8-y^{2}} 1 d x d y & =\int_{-2}^{2} 8-2 y^{2} d y \\
& =8 y-\left.\frac{2}{3} y^{3}\right|_{-2} ^{2} \\
& =\left(16-\frac{16}{3} 1-\left(-16+\frac{16}{3}\right)\right. \\
& =32-\frac{32}{3}=64 / 3
\end{aligned}
$$

7. (10 points) Let H be the solid hemisphere that lies above the $x y$-plane, has center $(0,0,0)$ and radius 1. Evaluate:

$$
\iiint_{H} z \sqrt{x^{2}+y^{2}+z^{2}} d V .
$$

Do in spherical

$$
\begin{aligned}
& 0 \leq \theta \leq 2 \pi \quad f(x, y, z)=p \cos \phi \cdot \rho \\
& 0 \leq \phi \leq \pi / 2 \quad \\
& 0 \leq \rho \leq 1 \\
& \int_{0}^{2 \pi} \int_{0}^{\phi \pi / 2} \int_{0}^{1} p^{2} \cos \phi \cdot \rho^{2} \sin \phi d p d \phi d \theta \\
& =\left.\int_{0}^{2 \pi} \int_{0}^{\pi / 2} \frac{p^{5}}{5} \sin \phi \cos \theta\right|_{p=0} ^{1} d \phi d \theta \\
& =\left.\frac{1}{5} \int_{0}^{2 \pi} \frac{\sin ^{2} \phi}{2}\right|_{\theta=0} ^{\pi / 2} d \theta \\
& =\frac{1}{5} \int_{0}^{2 \pi} 1 / 2 d \theta=\pi / 5
\end{aligned}
$$

8. (10 points) Evaluate

$$
\int_{0}^{1} \int_{\sqrt{x}}^{1} \sqrt{y^{3}+1} d y d x
$$

by changing the order of integration.

$=\int_{0}^{1} \sqrt{y^{3}+1} d x \sqrt{2} \int_{0}^{2} 3 . y^{2} \sqrt{y^{3}+1} d y \quad \begin{aligned} & u=y^{3}+1 \\ & d u=3 y^{2} d y\end{aligned}$

$$
=\frac{1}{3} \cdot u^{3 / 2} \cdot \frac{2}{3}=
$$

$$
\left.\frac{2}{9}\left(y^{3}+1\right)^{3 / 2}\right|_{0} ^{1}
$$

9. (10 points) Let R be the top half of the disc of radius 2 centered at the origin, ie.:

$$
\begin{aligned}
& 0 \leq x^{2}+y^{2} \leq 4 \\
& 0 \leq y
\end{aligned}
$$

Let $f(x, y)=y$. Calculate the average value of the function $f(x, y)$ on the region D.

Area $R=\frac{1}{2} \pi r^{2}=2 \pi$
Avg value $=\frac{1}{A r e a R} S_{R} y d A$ do in polar!

$$
\begin{aligned}
\int_{0}^{\pi} \int_{0}^{2} r \sin \theta \cdot r d d \theta=\left.\int_{0}^{\pi} \frac{3^{3}}{3} \sin \theta\right|_{0} ^{2} d \theta & =\int_{0}^{\pi} 8 / 3 \sin \theta d \theta \\
& =-8 /\left.3 \cos \theta\right|_{0} ^{\pi} \\
& =\frac{8}{3}-(-8 / 3)=116 / 3
\end{aligned}
$$

$$
\text { Avg value }=\frac{16 / 3}{2 \pi}=\frac{8}{3 \pi}
$$

NAME:

