Math 2950- Final Exam - December 15, 2004

1. (10 points)

a. Find the angle between $(-1,1,0)$ and $(0,1,-1)$.
b. Find the component (a.k.a. scalar projection) of $(2,3,-4)$ in the direction of $(1,1, \sqrt{2})$.

2. (15 points)

Consider the picture below:

a. Label the third vector shown in the picture.
b. Use vectors to show that the line segment connecting the midpoints of two sides of a triangle is parallel to the third side and has length half the length of the third side. (Hint: Draw the triangle with one vertex at the origin and consider the diagram above.)
3. ($\mathbf{1 0}$ points) Find the equation of the plane (in any form you like) passing through $(2,-2,5)$ and perpendicular to the line through $(1,1,1)$ and $(-2,3,1)$.
4. (15 points) A particle moves on the path $\vec{x}(t)=(2 \cos (t), \sin (t), t)$. Find the velocity, acceleration and speed. Then neatly sketch and label the path between $t=0$ and $t=6 \pi$.
5. (10 points) Let $\mathbf{F}(x, y, z)=(x y z, x \sin (y), y z)$. Calculate $\operatorname{div} \mathbf{F}$ and curlF.

6. (15 points)

a. $w=x^{2}+y^{2}, x=s \cos (t), y=s \sin (t)$. Find $\frac{\partial w}{\partial s}$ at the point where $t=\pi / 3$ and $s=2$.
b. $z=x^{2} \cos (x y)$. Find the total differential $d z$.
7. (15 points) Evaluate the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{x}$ where $\mathbf{F}(x, y)=\left(x^{2} y, x^{2}-\right.$ $y)$ and C is the curve $\mathbf{r}(t)=(t, 1-t), 0 \leq t \leq 1$.
8. (15 points) Consider the function $f(x, y)=x+y-2 \sqrt{x y}$ defined on the first quadrant $x \geq 0, y \geq 0$. Show the global minimum of $f(x, y)$ is 0 ,
i.e. $f(x, y) \geq 0$. (Hint: There will be an entire ray of critical points)

Use the result above to prove the arithmetic/geometric mean inequality:

$$
\sqrt{x y} \leq \frac{x+y}{2}
$$

9. (15 points) Find the absolute maximum and minimum values of $f(x, y)=$ $3+x y-x-2 y$ on the closed triangular region with vertices $(0,0),(5,0),(0,5)$.
10. (15 points) Calculate $\iiint_{E} x z d V$ where E is the region between the spheres $x^{2}+y^{2}+z^{2}=4$ and $x^{2}+y^{2}+z^{2}=9$, above the $x y$-plane (i.e. $z \geq 0$) and in front of the $y z$ plane (i.e. $x \geq 0$).

11. (20 points)

a. Show that the vector field

$$
\mathbf{F}(x, y, z)=(y+z, x+2 y,-\sin (z)+x)
$$

is conservative by checking that $\operatorname{curl} \mathbf{F}=0$.
b. Find a potential function $f(x, y, z)$.
c. Let C be the curve parameterized

$$
\mathbf{r}(t)=\left(t e^{t}, \frac{\sqrt{t+1}}{5+t}, \pi t^{2} \sqrt{t+1}\right)
$$

for $0 \leq t \leq 3$. Calculate the work done by the force \mathbf{F} on a moving particle traversing C.
12. (15 points) Use Green's Theorem to evaluate:

$$
\oint_{C}\left(x^{2}-y^{3}\right) d x+\left(x^{3}+y^{2}\right) d y
$$

where C is the unit circle $x^{2}+y^{2}=1$ traversed clockwise.

13. (15 points)

a. Find the surface area of the helicoid

$$
\mathbf{r}(u, v)=(u \cos (v), u \sin (v), v), 0 \leq u \leq 1,0 \leq v \leq \pi
$$

b. Find the tangent plane to the helicoid at the point where $u=1 / 2$, $v=\pi / 2$.
14. (15 points) Find the area enclosed by the ellipse $4 x^{2}+y^{2}=1$.

