Name:

Math 241WW- Final Exam - December 12, 2008

Instructions: The exam is worth 150 points. Calculators are not permitted. You are permitted two index cards, each no larger than 3×5, with whatever you like written on them.

1. (10 points) Let $f(x, y)=x^{2}+2 y^{2}$. Sketch level curves $f(x, y)=k$ for $k=1,2,3,4$ and on the same picture sketch the vector field ∇f.
b. Find the direction and the rate of maximum increase for $f(x, y)$ at the point $(1,3)$.
2. (15 points) Let S be the surface $z=x^{2}+y^{2}$ lying below the plane $z=2$.
a. Neatly sketch the surface.
b. Parameterize the surface as $\vec{r}(u, v)$ with $(u, v) \in D$. Be sure to describe the region D. c. Let $\vec{F}(x, y, z)=(z, x, y)$. Use Stokes' theorem to evaluate:

$$
\iint_{S} \operatorname{curl} \vec{F} \cdot \vec{n} d S
$$

3. (15 points) Let C be the curve of intersection of the plane $y+z=7$ and the cylinder $x^{2}+y^{2}=4$, oriented to be counterclockwise when viewed from above. Use Stokes' theorem to compute $\int_{C} \vec{F} \cdot d \vec{r}$ where $F(x, y, z)=\left(-y^{2}, x, z^{2}\right)$.
4. (15 points) Let S be the cylinder (including top and bottom) $x^{2}+y^{2}=1,0 \leq z \leq 1$, with outward pointing normal. Let $\vec{F}(x, y, z)=\left(x^{3}, y^{3}, e^{-z}\right)$. Use the divergence theorem to compute

$$
\iint_{S} \vec{F} \cdot \vec{n} d S
$$

5. (10 points) Let S be the portion of the paraboloid $z=x^{2}+y^{2}$ which lies between the planes $z=1$ and $z=4$. Write down but do not evaluate an integral which gives the surface area of S.
6. (10 points) Consider the surface parameterized by $\vec{r}(u, v)=\left(u^{2}+v^{2}, u v, u v^{2}\right)$. Find the tangent plane to this surface at the point where $u=1, v=2$. Give the equation of the tangent plane in two forms, first parameterize it. Second, give it in $a x+b y+c z=d$ form.
7. (10 points) Use Green's theorem to calculate the work done by the force field $\vec{F}(x, y)=$ $\left(x^{2}-y^{3}, x^{3}+y^{2}\right)$ moving a particle around the unit circle $x^{2}+y^{2}=1$ in the clockwise direction.
8. (10 points) Let $f(x, y, z)=x^{2} y+y^{2} z+x y z$.
a. Calculate ∇f and $\operatorname{curl}(\nabla f)$.
b. Calculate the line integral: $\int_{C} \nabla f \cdot d \vec{r}$ where C is the top half of the ellipse $3 x^{2}+7 y^{2}=$ 12 traversed from $(-2,0)$ to $(2,0)$.
9. (10 points) Let $f(x, y)=x^{4}+y^{2}-8 x^{2}-6 y+16$. Find and classify all critical points of $f(x, y)$ as local max, local min or saddle points.
10. (10 points) Suppose $w=x^{2} e^{y z}$ and $(x, y, z)=\left(s t+u^{2}, s^{2} u t, s+t u\right)$. Find $\frac{\partial w}{\partial u}$ at the point where $s=1, t=2, u=3$.
11. (10 points) Find the equation of the plane containing the points $(1,2,3),(-2,1,1),(-3,1,2)$.
12. (10 points) Let D be the region enclosed by the curves $y=0, y=x^{2}$ and $x=1$. Find the average value of $f(x, y)=x \sin y$ over the region D.
13. (5 points) Consider a particle with position at time t given by $\vec{r}(t)=\left(1+t, t^{3}, t^{2}\right)$. What is the speed of the particle at when $t=3$?
14. (10 points) Let R be the rectangle $[-3,3] \times[0,3]$. Estimate $\iint_{R} x y^{2}$ using a Riemann sum with $m=n=3$ and the upper right corner of each rectangle as your sample point.
