Name:

Math 241- Midterm Exam \#3 - November 13, 2008
Instructions: You are allowed a single 3 " by 5 " index card but no other notes, books, or calculators.

1. (15 points) Use spherical coordinates to evaluate:

$$
\int_{-2}^{2} \int_{0}^{\sqrt{4-y^{2}}} \int_{-\sqrt{4-x^{2}-y^{2}}}^{\sqrt{4-x^{2}-y^{2}}} \sqrt{x^{2}+y^{2}+z^{2}} d z d x d y
$$

2. ($\mathbf{1 0}$ points) Draw a sketch of the region D over which the iterated integral is being evaluated, then express it as an iterated integral in which the order of integration is reversed:

$$
\int_{0}^{2} \int_{0}^{x^{2}} f(x, y) d y d x
$$

3. (15 points) Find the work done by a force $\vec{F}(x, y)=(2-y, x)$ in moving a particle along one arch of the cycloid given by $\vec{r}(t)=(t-\sin t, 1-\cos t)$ for $0 \leq t \leq 2 \pi$.
4. (5 points) A vector field \vec{F} is conservative if ...
5. (10 points) Neatly sketch the vector field below, be sure to sketch enough vectors so the behavior of the vector field is clear.

$$
\vec{F}(x, y)=(-y, x)
$$

6. (10 points) Find the volume of the part of the ball $\rho \leq 5$ that lies between the cones $\phi=\pi / 4$ and $\phi=\pi / 3$.
7. (10 points) Let R be the rectangle $[0,4] \times[0,2]$. Estimate $\iint_{R} x^{2} y$ using a Riemann sum with $m=n=2$ and the upper right corner of each rectangle as your sample point.
8. ($\mathbf{1 5}$ points) Find the volume of the region $E \subset \mathbb{R}^{3}$ bounded below by the $x y$-plane, above by the plane $z=x$, and by the parabolic cylinder $y^{2}=4-x$.
9. ($\mathbf{1 0}$ points) Evaluate the double integral:

$$
\iint_{D} x y d A
$$

where D is the triangular region with vertices $(0,0),(1,2)$ and $(0,3)$.

