Name:
Math 2950- Midterm Exam \#1 - September 27, 2004

1. (10 points) Find the equation of the plane perpendicular to the line

$$
(x, y, z)=(1,-2,3)+t(1,-2,1)
$$

and passing through the point $(2,4,-1)$.
2. (15 points) Let $\vec{u}=(1,-1,3), \vec{v}=(1,1,2)$. Calculate $\vec{u} \cdot \vec{v}$ and $\vec{u} \times \vec{v}$. Then find the angle between \vec{u} and \vec{v}.
3. ($\mathbf{1 0}$ points). Let \vec{u} be a differentiable vector funtion and f a real valued function. Then the chain rule says:

$$
\frac{d}{d t}[\vec{u}(f(t))]=?
$$

4. (10 points) Sketch the space curve

$$
\vec{r}(t)=(t, 2 t, \cos (t))
$$

for the interval $0 \leq t \leq 3 \pi$, indicating with an arrow the direction of increasing t.
5. (10 points) Sketch the region given by the spherical coordinate inequalities:

$$
\begin{aligned}
& 0 \leq \phi \leq \pi / 2 \\
& -\pi / 2 \leq \theta \leq \pi / 2 \\
& 0 \leq \rho \leq 2
\end{aligned}
$$

6. (20 points)

a. Sketch the surface given by $z=x^{2}+y^{2}$.
b. Verify that the two space curves below both lie on the surface:

$$
r \overrightarrow{(t})=(\cos (t), \sin (t), 1) \text { and } \vec{x}(s)=\left(s, 0, s^{2}\right)
$$

c. Verify that the point $(1,0,1)$ lies on both curves. (i.e. find a t_{0} such that $(1,0,1)=$ $\vec{r}\left(t_{0}\right)$ and a s_{0} such that $(1,0,1)=\vec{x}\left(s_{0}\right)$.)
d. Find the equation for the tangent line to the curve $\vec{r}(t)$ at the point $(1,0,1)$.
e. Find the equation for the tangent line to the curve $\vec{x}(s)$ at the point $(1,0,1)$.
f. Find the equation of the plane passing through the point $(1,0,1)$ and containing both tangent lines above. This is called the tangent plane to the surface at the point $(1,0,1)$.
7. (15 points) a. Find the velocity, acceleration, and speed of a particle with position function given by:

$$
r(t)=\left(t^{2}+1, \cos (t), t\right)
$$

b. Express the arc length of the curve above from $t=1$ to $t=2$ as a definite integral (do not try to evaluate the integral!).
8. (10 points) Find the work by a force $\vec{F}=(1,-1,1)$ moving an object from the point $(1,1,1)$ to the point $(4,2,1)$.

