Name: SOLUTIONS

Quiz \#6 - October 23, 2008

1. Let $f(x, y)=3 x+12 y-x^{3}-y^{3}$. Find all critical points and classify each as a local maximum, local minimum or saddle point using the second derivative test.

Solution: $f_{x}=3-3 x^{2}, f_{y}=12-3 y^{2}$ so the critical points are $(1,2),(-1,2),(-1,-2),(1,-2)$.
Notice that $f_{x x}=-6 x, f_{y y}=-6 y$ and $f_{x y}=0$. Thus $D(x, y)=36 x y$. We get:
$D(1,2)=72, f_{x x}(1,2)<0$ so local max.
$D(-1,-2)=72, f_{x x}(1,2)>0$ so local min.
$D(1,-2)=D(-1,2)=-72$ so saddles.
2. Let $z=x^{2} y$. Find the total differential $d z$.

$$
d z=2 x y d x+x^{2} d y
$$

