Parameterized curves \(\leftrightarrow \Phi(t) : \mathbb{R} \rightarrow \mathbb{R}^n \)
Domain \(\subseteq \mathbb{R} \),
Range \(\subseteq \mathbb{R}^n \)

Chapter 14
Functions \(\mathbb{R}^n \rightarrow \mathbb{R} \), i.e., many variables, output is real

Example

1. \(f(x,y) = \frac{\ln(x+y)}{x-1} \)
 Domain: Need \(x+y>0 \)
 \[f(x,y) = \frac{\ln(x+y)}{x-1} \]

2. \(f(x,y) = \sqrt{y-x^2} \)
 Domain

3. Find domain & range of \(f(x,y,z) = \sqrt{1-x^2-y^2-z^2} \)
 Domain: \(1-x^2-y^2-z^2 \geq 0 \)
 \[1-x^2-y^2-z^2 \geq 0 \]
 Inside sphere

 Range \([0,1]\)

Graphing

Suppose \(f : \mathbb{R}^2 \rightarrow \mathbb{R} \), we usually plot graph as

\(\text{Graph} f = \{ (x,y,z) \in \mathbb{R}^3 | z = f(x,y) \} \)

Example

\(f(x) = x^2 \)
\(\Delta \text{min} (x = 1) \)

\(f(x,y) = x^2 + y^2 \)
Paraboloid, \(\mathbb{R}^2 \)
Example
\[f(x,y) = x^2 - y^2 \]

Graph

Example
\[f(x,y) = ax + by + c \] called a linear function of \(ax + by \)

Graph is plane \(z = ax + by + c \).

Level Curves

Graph \(z = f(x,y) \) is just one way to represent a function. Another is to sketch level curves \(f(x,y) = k \) for various choices of \(k \).

Example
\[f(x,y) = x^2 + y^2 \]

Sometimes called "contour map" or "isothems" or "isosours".
Example

Let \(f(x,y) = x^2 - y \). Sketch level curves.

\[k = 0 \quad y = x^2 \]

Example

\(f(x,y) = e^{\frac{y}{x}} \)

\[k = e^{\frac{y}{l_2}} \]

\[l_2 = \frac{y}{l_2} \quad y = x/l_2 \]

Computers are very helpful for plotting!

Example

\(f(x,y,z) = x^2 + y^2 + \frac{z^2}{4} \)

Sketch level surfaces.

Level surfaces are ellipsoids long in the z direction.

Note: To graph this function would require 4-dimensions, i.e.,

\(W = x^2 + y^2 + \frac{z^2}{4} \)

Example

\(f(x,y) = \arcsin (x^2 y^2 - 2) \). Find and sketch the domain.
Limits

\[f(x, y) \rightarrow L \]

Pick \(\varepsilon > 0 \) (think small).

There is a \(\delta > 0 \) so the disk \(0 < \sqrt{(x-a)^2 + (y-b)^2} < \delta \) maps into \((L - \varepsilon, L + \varepsilon) \).

\(\delta \) on \(f(a, b) \) is irrelevant.

Def. Let \(f \) be a function of two variables whose domain \(D \) includes points arbitrarily close to \((a, b) \). Then

\[\lim_{(x, y) \to (a, b)} f(x, y) = L \]

For every \(\varepsilon > 0 \) there exists a \(\delta > 0 \) such that

\[(x, y) \in D \text{ and } 0 < \sqrt{(x-a)^2 + (y-b)^2} < \delta \implies |f(x, y) - L| < \varepsilon. \]

General def. \(f(x_1, x_2, x_3) \)

\[\lim_{(x_1, x_2, x_3) \to (a_1, a_2, a_3)} f(x_1, x_2, x_3) = L \]
Useful idea

Suppose \(f(x,y) \to L_1 \) as \((x,y)\to(a,b)\) along path \(C_1\) and

Suppose \(f(x,y) \to L_2 \) along path \(C_2\) with \(L_1 \neq L_2\).

Then \(\lim_{(x,y)\to(a,b)} f(x,y) \) DNE.

Ex

\[
\lim_{(x,y)\to(a,b)} \frac{xy}{x^2+y^2}
\]

Approach on \(y=0, x=0, y=x \)

Ex

\[
F(x,y) = \frac{xy^2}{x^2+y^2}
\]

\[
\lim_{(x,y)\to(a,b)} F(x,y) = ?
\]

- \(y = mx \) all \(m \to 0 \)
- Parameter \(x-y^2 \)

Limits are complicated!