1. If \(\vec{F} = (P(x,y), Q(x,y)) \) and \(\frac{\partial Q}{\partial y} - \frac{\partial P}{\partial x} \) on open, simply connected region then \(\vec{F} \) is conservative. Today we generalize this to 3-dim fields.

- Partial integration helps us find a potential function \(f \) which we can use to do line integrals using
 \[
 \oint_{\Gamma} \vec{F} \cdot d\vec{r} = f(\Gamma(\text{end})) - f(\Gamma(\text{start}))
 \]

2. **Green's Theorem** \(C \) closed curve, simple, positively oriented with \(D \) inside. Then

\[
\oint_{C} P \, dx + Q \, dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA
\]

- When \(\vec{F} \) is conservative this confirms what we know that line integral along closed curve is zero.

- Area \(D \): \(\int S = \iint_{D} \, dA = \frac{1}{2} \iint_{D} (x \, dy - y \, dx) \)

- **Ex:** \(\vec{F} = <e^y + x^2 y, e^x - xy^2> \) \(C \) = circle \(x^2 + y^2 = 9 \) clockwise. Find

\[
\oint_{C} \vec{F} \cdot d\vec{r}
\]
Vector Differential Operators

Notation \(\nabla = \triangledown = (\frac{\partial}{\partial x}, \frac{\partial}{\partial y}) \) or \((\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}) \) etc.,
think of it as an operator.

Ex \(\nabla f = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}) \) gradient.

Def Let \(\vec{F} \) be a vector field on \(\mathbb{R}^3 \), \(\vec{F} = (P, Q, R) \). Then curl \(\vec{F} \) is a new vector field:

\[
\text{curl } \vec{F} = \nabla \times \vec{F} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right)
\]

Ex \(\vec{F} = (3x^2, xy, z) \) curl \(\vec{F} = (0, 0, y) \)

Thm 1 Suppose \(f(x, y, z) \) has continuous 2nd partials. Then curl \(\nabla f = 0 \).
This conservative vector fields have curl 0

2. Suppose \(\vec{F} \) is continuous on all of \(\mathbb{R}^3 \) then if curl \(\vec{F} = 0 \), \(\vec{F} \) is conservative

Def If curl \(\vec{F} = 0 \), say \(\vec{F} \) is irrotational at \(P \).

Imp \(\nabla \times \vec{F} \)
rotation in plane \(L \) to \(\vec{F} \)

Special case \(\vec{F}(x, y) = (P(x, y), Q(x, y), R(x, y)) \)

\[
\text{curl } \vec{F} = \left(0, 0, \frac{\partial R}{\partial x} - \frac{\partial P}{\partial y} \right)
\]
Def: Suppose \(\mathbf{F} = (P,Q,R) \) a vector field. Then its divergence \(\mathbf{F} \) is

\[
\text{div } \mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}
\]

\(\text{curl } \mathbf{F} \) is a vector field, \(\text{div } \mathbf{F} \) is a scalar.

Exercise \(\text{div } (\text{curl } \mathbf{F}) = 0 \)

Because \(\text{c} \text{i} \text{a} \text{i} \text{r} \text{a} \text{n} \text{i} \text{t} \text{ u} \text{n} \text{e} \text{s} \) cancel in pairs

Rmk: \(\text{div } \mathbf{F} \) measures tendency of fluid to flow from a point.

\(\text{If } \text{div } \mathbf{F} = 0 \) \(\mathbf{F} \) is incompressible.

Restating Green’s Theorem in Vector Form

1. \(\text{Think } \mathbf{F} = (P,Q,0) \) so \(\text{curl } \mathbf{F} = (0,0, -\frac{\partial Q}{\partial x} + \frac{\partial P}{\partial y}) \). Then

\[
\oint \mathbf{F} \cdot d\mathbf{r} = \iint_D \text{curl } \mathbf{F} \cdot \hat{n} \, dA
\]

2. \(\text{Recall } \hat{n} \) (unit normal to curve) = \((\frac{1}{\sqrt{10}}, \frac{-1}{\sqrt{10}}, \frac{1}{\sqrt{10}}) \) plug in

\[
\oint \mathbf{F} \cdot \hat{n} \, ds = \iint_D \text{div } \mathbf{F} \, dA
\]

We generalize these at end of course.
Problems

1. \(\vec{F}(x,y,z) = (xyz^2, x \sin y, xz) \) Find \(\text{curl} \vec{F}, \text{div} \vec{F} \).

2. Do the following make sense? Let \(\vec{F} \) a vector field:
 \[\text{curl} \vec{F} \]
 \[\text{curl}(\text{grad} A) \]
 \[\text{div}(\text{curl}(\text{grad} f)) \]

3. Is there a vector field \(\vec{G} \) such that \(\text{curl} \vec{G} = \langle x \sin y, \cos y, z - y \rangle \)?

4. \[\begin{array}{c}
 \vec{F} \\
 \vec{G}
 \end{array} \]
 Discuss \(\text{curl} \vec{F} \), \(\text{div} \vec{F} \).

Parametric Surfaces

Ex. \(\vec{r}(u,v) = (x(u,v), y(u,v), z(u,v)) \) \((u,v) \in D \subseteq \mathbb{R}^2 \)

Ex.

1. \(\vec{r}(u,v) = (u, v, \sin(u \sin v)) \) is graph of function.

2. \(\vec{r}(u,v) = (\sin v \cos u, \sin v \sin u, \cos v) \) \(0 \leq u \leq 2\pi \)
 \[0 \leq v \leq \pi \]

 Sphere radius 1
\[\hat{r}(r, \theta) = (r \cos \theta, r \sin \theta, r) \quad 0 \leq r \leq 2 \quad 0 \leq \theta \leq 2\pi \]

Notice: \[z = x^2 + y^2 \]

piece of paraboloid

Parametrizing surfaces is difficult!

Next class

- tangent planes (analogues to tangent vectors)
- surface areas ("""" are lengths)
- surface integrals ("""" line integrals)