Recall \(F(0)dx = F(b) - F(a) \)

Then let \(\vec{r}(t) \) be a smooth curve. Suppose \(f \) is a function with \(\nabla f \) continuous on the curve. Then

\[
\int_a^b \nabla f \cdot d\vec{r} = f(\vec{r}(b)) - f(\vec{r}(a))
\]

This theorem says:

<table>
<thead>
<tr>
<th>Line integral of conservative vector field</th>
<th>=</th>
<th>change in potential</th>
</tr>
</thead>
</table>

Ex. \(\vec{F}(x,y) = (y,x) \). Find work done along \(\vec{r}(t) = (t, \sqrt{2t}) \) from \((1,1) \) to \((3,3) \).

Notice \(f(x,y) = xy \) \(\vec{F} = \nabla f \). Thus

\[
\int_1^3 \vec{F} \cdot d\vec{r} = f(3) - f(1,1) = 27 - 1 = 26
\]

Check this is

\[
\int_1^3 \left(\sqrt{2t} \frac{1}{2\sqrt{t}} \right) dt = \int_1^3 \sqrt{2} dt = \sqrt{2} \left[t \right]_1^3 = 2\sqrt{2}
\]

Def. \(\int_1^3 \vec{F} \cdot d\vec{r} \) is independent of path in Dir

\[
\int_{C_1} \vec{F} \cdot d\vec{r} = \int_{C_0} \vec{F} \cdot d\vec{r} \text{ for any curves } C_1, C_0 \text{ in } D \text{ with same start and endpoint.}
\]

Ex. Line integrals of conservative vector fields are ind of path.
Then $\oint \mathbf{F} \cdot d\mathbf{r}$ is independent of path in D if and only if

$$\oint \mathbf{F} \cdot d\mathbf{r} = 0 \text{ for all closed curves } C \text{ in } D$$

Proof

$$\oint \mathbf{F} \cdot d\mathbf{r} = \oint \mathbf{F} \cdot d\mathbf{r}$$

$$= \oint \mathbf{F} \cdot d\mathbf{r} - \oint \mathbf{F} \cdot d\mathbf{r}$$

Then $\oint \mathbf{F} \cdot d\mathbf{r}$ is ind of path if and only if \mathbf{F} is conservative in D.

Proof

Define $f(x,y) = \oint \mathbf{F} \cdot d\mathbf{r}$ where (a,b) fixed.

Choose any path to (x,y). Check $\nabla f = \nabla \mathbf{F}$.

Open: Any pt in D has

Connected: Path b/w any two points

Problem: When is \mathbf{F} conservative? Suppose $\mathbf{F}(x,y) = (P(x,y), Q(x,y))$.

If $P = \frac{\partial f}{\partial y}$ and $Q = \frac{\partial f}{\partial x}$ then Clairaut says $P_y = Q_x$.!
Let $\mathbf{F}(x,y) = (P(x,y), Q(x,y))$ be conservative, with P, Q having continuous partial derivatives. Then

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}.$$

2. Suppose $\mathbf{F}(x,y) = (P(x,y), Q(x,y))$ and $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ throughout D. Suppose D is open, simply connected. Then \mathbf{F} is conservative.

Simply connected: simple closed curves can be pulled shut.

Ex. $\mathbf{F}(x,y) = (x^3, y^2) \quad \frac{\partial P}{\partial y} = 0 = \frac{\partial Q}{\partial x}$ so \mathbf{F} is conservative.

$$f = \frac{1}{3} x^3 + \frac{1}{2} y^2 \quad \nabla f = \mathbf{F}$$

Ex. $\mathbf{F}(x,y) = (-y, x) \quad \frac{\partial P}{\partial y} = -1 \quad \frac{\partial Q}{\partial x} = 1$ Not conservative.

Ex. Let $\mathbf{F} = (ye^{x+y} \sin y, e^x \cos y)$

Is \mathbf{F} conservative? If so, find f.
Ex. Show \(\int_C (x \, dx + y \, dy) \) is independent of path and evaluate the integral \(C \) goes from \((1,0)\) to \((2,0)\).

Green's Thm

Define a simple, closed curve \(C \), positive orientation means once around \(C \).

Then let \(C \) be positively oriented, piecewise-smooth, simple closed curve in the plane. Let \(D \) be the region bounded by \(C \). If \(P \) and \(Q \) have continuous partial derivatives on an open region containing \(D \) then:

\[
\oint_C P \, dx + Q \, dy = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA
\]

Proofs:
1. LHS = \(\iint_D \vec{F} \cdot d\vec{S} \), \(\vec{F} = \{P,Q\} \)
2. Also written:

\[
\iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA = \oint_C P \, dx + Q \, dy
\]
Example 1:
\[\int \cos(x^3) \, dx + xy \, dy \]
C triangular curve
\[(0,0) \rightarrow (1,0) \rightarrow (1,3)\]

Example 2:
\[\int (ye^{y^2}) \, dx + (2x + \cos(y^2)) \, dy \]
C boundary
of region enclosed by \(y = x^2, x = y^2 \)

Example 3:
\[F(x,y) = (0, x) \]
\[\frac{\partial F}{\partial x} - \frac{\partial F}{\partial y} = 1 \]

Example 4:
\[F(x,y) = (1-y, 0) \]
\[F(x,y) = (y, x/y) \]

Thus, \[\int \int_D dA = \text{Area D} = \oint x \, dy = -\oint y \, dx \]

Example 5:
Area of ellipse
\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \]
using \(3 \cdot 1 \)