Math 141- Midterm Exam \#1 - September 24, 2007

1. (15 points) True or false:
\qquad a. A function which is continuous at $x=a$ must also be differentiable at $x=a$.
\qquad b. It is possible for the graph of a function to have 3 vertical asymptotes.
\qquad c. The intermediate value theorem applies to $f(x)=1 / x$ on the interval $[-2,1]$.
\qquad d. If $\lim _{x \rightarrow 0} f(x)=\infty$ and $\lim _{x \rightarrow 0} g(x)=\infty$ then $\lim _{x \rightarrow 0}[f(x)-g(x)]=0$
\qquad e. If $p(x)$ is a polynomial then $\lim _{x \rightarrow 5} p(x)=p(5)$.

2. (20 points)

a. Give the formal definition for $\lim _{x \rightarrow a} f(x)=L$.
b. Use the definition to prove that

$$
\lim _{x \rightarrow 4}(3 x-7)=5
$$

3. (20 points) Evaluate the following limits. If the limit does not exist then write DNE.
a. $\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}$
b. $\lim _{x \rightarrow 0} \frac{|x|}{x}$
c. $\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}-9}}{2 x-6}$.
d. $\lim _{x \rightarrow \infty} \frac{2 x^{2}-5 x+11}{x^{2}-2}$.
4. (15 points) a. Neatly sketch the graph of a single function $f(x)$ which has the following properties:

- $\lim _{x \rightarrow 3^{+}} f(x)=2, \lim _{x \rightarrow 3^{-}} f(x)=0, \quad f(3)=1$.
- $f(x)$ is continuous from the right at $x=5$ but not continuous from the left at $x=5$.
- $\lim _{x \rightarrow \infty} f(x)=4, \quad \lim _{x \rightarrow-\infty} f(x)=-1$.
b. Neatly sketch the graph of a single function $g(x)$ which has the following properties:
- $g(x)$ is continuous on $(-\infty, \infty)$
- $g^{\prime}(6)=0$
- $g(x)$ is not differentiable at $x=1$
- $g(x)$ has a vertical tangent line at $x=-5$.

5. (20 points) Let $f(x)=1 / x$.
a. Use the definition of the derivative to prove that $f^{\prime}(x)=-1 / x^{2}$.
b. Find the equation of the tangent line to $y=1 / x$ at the point where $x=5$.
6. (10 points) The graph of a function $f(x)$ is given below. Use it to sketch the graph of the derivative $f^{\prime}(x)$ on the same axes.
