Name:
Math 141- Midterm Exam \#2 - October 24, 2007

1. (50 points) Find $\frac{d y}{d x}$. You do not need to simplify your answers.
a. $y=x \cos (x)$
b. $y=\tan \left(x^{2}+1\right)$
c. $y=\frac{\sqrt{x}}{x^{3}+1}$
d. $y=\ln (5 x-15)$
e. $y=3^{x}$
f. $y=x^{10}-9 x^{3}+15 x-3$
g. $y=\sin ^{3}\left(x^{2}\right)$
h. $y=(\sin x)^{x}$.
i. $y=\sqrt{\frac{\left(x^{2}+1\right)^{5} e^{x} x^{9}}{x^{2}+2}}$
j. $\sin (x y)=5 x$
2. ($\mathbf{1 0}$ points) Find the equation of the tangent line to the curve

$$
2 x-x y^{2}=-6
$$

at the point $(3,2)$.
3. (10 points) Find the linear approximation to the function $f(x)=x^{3 / 4}$ at $\mathrm{x}=16$. Then use this linear approximation to estimate $15^{3 / 4}$.
4. (5 points) Evaluate this limit by first expressing it as a derivative:

$$
\lim _{h \rightarrow 0} \frac{\sqrt[4]{16+h}-2}{h}
$$

5. (10 points) Let $r(x)=f(g(h(x)))$, where $h(1)=2, h^{\prime}(2)=-1, g(2)=3, h^{\prime}(1)=4$, $g^{\prime}(2)=5$, and $f^{\prime}(3)=6$. Find $r^{\prime}(1)$.
6. ($\mathbf{1 5}$ points) The angle of elevation of the sun is decreasing at a rate of 0.25 radians/hour. How fast is the length of the shadow cast by a 4 foot tall pole increasing when the angle of elevation of the sun is $\pi / 6$? (FYI: $\cos (\pi / 6)=\sqrt{3} / 2, \sin (\pi / 6)=1 / 2$.)
