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We characterize the nonlinear stage of modulational instability (MI) by studying the longtime
asymptotics of the focusing nonlinear Schrödinger (NLS) equation on the infinite line with initial
conditions tending to constant values at infinity. Asymptotically in time, the spatial domain divides into
three regions: a far left and a far right field, in which the solution is approximately equal to its initial value,
and a central region in which the solution has oscillatory behavior described by slow modulations of the
periodic traveling wave solutions of the focusing NLS equation. These results demonstrate that the
asymptotic stage of MI is universal since the behavior of a large class of perturbations characterized by a
continuous spectrum is described by the same asymptotic state.
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Introduction.—Modulational instability (MI)—i.e., the
instability of a constant background to long wavelength
perturbations—is one of the most ubiquitous phenomena
in nonlinear science (e.g., see Ref. [1] and the references
therein). The effect, which is known as Benjamin-Feir
instability in the context of deep water waves [2], has been
known since the 1960s, but it has received renewed attention
in recent years and was also linked to the formation of rogue
waves in optical media [3,4] and in the open sea [5].
The dynamics of many systems affected by MI is

governed by the one-dimensional focusing nonlinear
Schrödinger (NLS) equation, which models the evolution
of weakly nonlinear dispersive wave packets in such
diverse fields as water waves, plasmas, optics, and Bose-
Einstein condensates. One can therefore study the initial
(i.e., linear) stage of MI by linearizing the NLS equation
around the constant background. One easily sees that
all Fourier modes below a certain threshold are unstable,
and the corresponding perturbations grow exponentially.
However, the linearization ceases to be valid as soon as
perturbations become comparable with the background. A
natural question, then, is what happens at this point, which
is referred to as the nonlinear stage of MI. Surprisingly, a
precise characterization of the nonlinear stage of MI for
generic, finite-energy perturbations has remained, by and
large, an open problem for the last 50 years.
The NLS equation is a completely integrable system [6],

and it admits an infinite number of conservation laws and
exact N-soliton solutions for arbitrary N’s, describing the
elastic interaction of solitons [6]. By analogy with the case
of localized initial conditions, a natural conjecture was that
MI is therefore mediated by solitons [7,8]. The initial value
problem (IVP) for the NLS equation can be solved via the
inverse scattering transform (IST). In particular, the IST for
the focusing NLS equation with zero boundary conditions
(ZBC) at infinity (i.e., localized disturbances) was done

in Ref. [6], and the IST for the defocusing NLS equation
with nonzero boundary conditions (NZBC, i.e., solutions
that tend to finite nonzero values at infinity) was done
in Ref. [9]. However, only partial results [10–12] were
available for the focusing NLS equation with NZBC until
recently when, in Ref. [13], we developed a complete IST
for this case. (Recall that the IST for systems with NZBC is
notoriously more challenging, and the IVP for the vector
NLS with NZBC was also only solved recently [14,15]). In
Ref. [16] we then used the IST to study MI by computing
the spectrum of the scattering problem for simple classes of
perturbations of a constant background. In particular, we
showed that there are classes of perturbations for which
no solitons are present. Thus, since all generic perturbations
of the constant background are linearly unstable, solitons
cannot be the mechanism that mediates the MI, contra-
dicting a recent conjecture [7]. Instead, in Ref. [16] we
identified the instability mechanism within the context of
the IST by showing that the instability comes from the
continuous spectrum of the scattering problem associated
with the NLS equation (see below for further details).
In this Letter we use the framework developed in

Ref. [13] to characterize the nonlinear stage of MI. We
do so by studying the longtime asymptotic behavior of
localized perturbations of the constant background. We
show that, generically, the longtime asymptotics of modula-
tionally unstable fields on the whole line displays universal
behavior and decomposes the xt plane into two plane wave
regions—in which the solution is approximately equal
to the background up to a phase—separated by a central
region in which the leading-order behavior is described by
a slowly modulated traveling wave.
The NLS equation and MI.—We write the focusing NLS

equation as

iqt þ qxx þ 2ðjqj2 − q2oÞq ¼ 0; ð1Þ
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where qðx; tÞ represents the complex envelope of a qua-
simonochromatic, weakly nonlinear dispersive wave
packet, and the physical meaning of the variables x and
t depends on the physical context. (For example, in optics, t
represents propagation distance, while x is a retarded time.)
Here, qo ¼ jq�j > 0 is the background amplitude, and the
NZBC satisfied by the field are

q� ¼ lim
x→�∞

qðx; tÞ: ð2Þ

The term −2q2oq has been added to Eq. (1) so that q� are
independent of time, and they can be removed by a trivial
gauge transformation.
The constant background solution is simply

qsðx; tÞ ¼ qo. Linearizing Eq. (1) around this solution,
one finds that all Fourier modes with jζj < 2qo (where ζ is
the Fourier variable) are unstable, and that the growth
rate is γðζÞ ¼ jζj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4q2o − ζ2
p

. Below, we will use the IST
for Eq. (1) with the NZBC (2), which was developed
in Ref. [13], slightly reformulated in a way that is more
convenient for the present purposes.
Recall that the NLS equation (1) is the zero-curvature

condition Xt − Tx þ ½X; T� ¼ 0 of the matrix Lax pair
ϕx¼Xϕ and ϕt ¼Tϕ, with X¼ ikσ3þQ and T¼−ið2k2þ
q2o− jqj2−QxÞσ3−2kQ, where σ3 ¼ diagð1;−1Þ is the
third Pauli matrix, and

Qðx; tÞ ¼
�

0 q

−q� 0

�

: ð3Þ

As usual, the first half of the Lax pair is referred to as the
scattering problem and qðx; tÞ as the potential, and the direct
problem in the IST consists of determining the scattering data
(i.e., the reflection coefficient, discrete eigenvalues, and
norming constants) from the initial condition. This is done
through the Jost eigenfunctions ϕ�ðx; t; kÞ, which are
the simultaneous matrix solutions of both parts of the Lax
pair which reduce to plane waves, namely, ϕ�ðx;t;kÞ¼
E�ðkÞeiθðx;t;kÞσ3 þoð1Þ as x→�∞, where�iλ andE�ðkÞ ¼
I þ i=ðkþ λÞσ3Q� are, respectively, the eigenvalues and
corresponding eigenvector matrices of X� ¼ limx→�∞X,
with λðkÞ ¼ ðk2 þ qoÞ1=2 and θðx; t; kÞ ¼ λx − ωt, with
ωðkÞ ¼ 2kλ. These Jost eigenfunctions, which are the non-
linearization of the Fourier modes, are defined for all values
of k ∈ C such that λðkÞ ∈ R, which comprise the continuous
spectrum Σ ¼ R∪i½−qo; qo�; see Fig. 1 (left panel). The
scattering relation ϕ−ðx; t; kÞ ¼ ϕþðx; t; kÞAðkÞ defines the
scattering matrix AðkÞ for k ∈ Σ, and the corresponding
reflection coefficient is rðkÞ ¼ −a21=a22. The zeros of
a11ðkÞ and a22ðkÞ define the discrete spectrum of the
problem, which leads to solitons. As usual, time evolution
within IST is trivial. In particular, with the above normali-
zation of the Jost eigenfunctions, all the scattering data are
independent of time.
The focusing NLS equation (1) with the NZBC (2)

possesses a rich family of soliton solutions [10,17–19],

classified according to the possible placements of the
discrete eigenvalue [13]. In particular, the so-called
Akhmediev breathers provide a good representation for
the growth of seeded perturbations [20,21]. Importantly,
however, Akhmediev breathers are periodic in space,
and they therefore possess infinite energy. Hence, they
cannot describe the asymptotic state of localized (i.e.,
finite-energy) perturbations of the constant background.
Moreover, as mentioned earlier, there exist generic pertur-
bations of the constant background for which no discrete
spectrum (and thus no solitons) is present. Instead, the
key to describing the asymptotic stage of MI lies in the
continuous spectrum. Indeed, as we showed in Ref. [16],
ωðkÞ is purely imaginary for k ∈ i½−qo; qo�, and the Jost
solutions for k ∈ i½−qo; qo� are precisely the nonlineariza-
tion of the unstable Fourier modes. In fact, even their
growth rate is the same, modulo the usual rescaling.
The inverse problem in the IST consists of recon-

structing the solution qðx; tÞ of the NLS equation from
the scattering data and is formulated in terms of a
Riemann-Hilbert problem, namely, the problem of recon-
structing the meromorphic matrix Mðx; t; kÞ, defined as
Mðx; t; kÞ ¼ ðϕþ;1=a22;ϕ−;2Þe−iθσ3 for k ∈ Cþni½0; qo� and
Mðx; t; kÞ ¼ ðϕ−;1;ϕþ;2=a11Þe−iθσ3 for k ∈ C−ni½−qo; 0�,
where C� ¼ fk ∈ C∶Imk≷0g and ϕ�;j for j ¼ 1, 2 denote
the columns of ϕ�. This is done by using the scattering
relation and symmetries to obtain a jump condition
Mþðx; t; kÞ ¼ M−ðx; t; kÞVðx; t; kÞ for k ∈ Σ, where super-
scripts � denote projection from the left or right of the
contour Σ (oriented rightward along the real k axis and
upward along the segment i½−qo; qo�). Explicitly,

Vðx; t; kÞ ¼

8

>

>

>

>

<

>

>

>

>

:

�

1þ jrj2 r�e2iθ

re−2iθ 1

�

; k ∈ R;

iqo
k−λ

�

−r�e2iθ 1

1þ jrj2 −re−2iθ

�

; k ∈ i½0; qo�;

FIG. 1. (Left panel) The spectral k plane, showing the continuous
spectrum Σ (the red lines), the regions where Imλ > 0 (gray) and
Imλ < 0 (white), and a discrete eigenvalue kn together with its
symmetric counterpart. (Right panel) The asymptotic regime for
the xt plane, showing the decomposition into two plane wave
regions (white) and the modulated elliptic wave region (gray).
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plus a symmetric expression for k ∈ i½−qo; 0�. Note that
detMðx; t; kÞ ¼ 1 for k ∈ CnΣ and Mðx; t; kÞ → I as
k → ∞. The solution of the NLS equation is recovered via
the usual reconstruction formula qðx;tÞ¼−2ilimk→∞kM12.
The signature of MI in the inverse problem is the expo-
nentially growing entries of Vðx; t; kÞ for k ∈ i½−qo; qo�
through the time dependence of θðx; t; kÞ.
Longtime asymptotics of finite-energy perturbations.—

We now study the asymptotic state of MI for generic,
finite-energy perturbations of a constant background. As
mentioned earlier, we do so by computing the longtime
asymptotics of the solutions of the focusing NLS
equation with NZBC. As a concrete example we consider
boxlike perturbations with qðx; 0Þ ¼ qo for jxj > L
and qðx; 0Þ ¼ beiβ for jxj < L, in which case rðkÞ ¼
e2iλL½ðb cos β − qoÞk − ibλ sin β�=½λμ cotð2LμÞ − iðk2þ
qob cos βÞ�, with μ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ b2
p

. We emphasize, however,
that the results described below are not limited to this
example, and they apply to all localized perturbations such
that the corresponding reflection coefficient has a small
region of analyticity around the continuous spectrum and
such that no discrete spectrum is present.
Recall that for linear evolution equations one computes

the asymptotics of the solution as t → ∞ via stationary
phase or steepest descent by looking along lines x ¼ ξt,
with ξ fixed [22]. In this far-field approximation, the
solution essentially becomes the Fourier transform of the
initial condition, modulated by the similarity variable ξ and
evaluated at the critical points of the problem [23]. In the
nonlinear case, instead, one must use the IST. The longtime
asymptotics of solutions of the NLS equation with ZBC
was computed through various approaches in Refs. [24,25].
Those results, however, do not apply in our case. Here,
we used the more general nonlinearization of the steepest
descent method, namely, the Deift-Zhou method for oscil-
latory Riemann-Hilbert problems [26].
Asymptotic stage of MI.—Since the implementation of

the Deift-Zhou method is complicated, the details are
reported elsewhere. On the other hand, the main results
are straightforward. The key piece of information is the
sign structure of Imθ ¼ Im½λðξ − 2kÞ�t as a function of k
for ξ fixed. Let ξ� ¼ 4

ffiffiffi

2
p

qo. For jxj > ξ�t, there are two
real stationary points in the complex k plane. This situation
corresponds to the first and fourth panels of Fig. 2. For
jxj < ξ�t, there are two complex conjugate stationary
points in the complex k plane. This situation corresponds
to the second and third panels of Fig. 2.
Each of the four cases in Fig. 2 requires a different defor-

mation of the Riemann-Hilbert problem. Correspondingly,
the xt plane divides into three regions, as illustrated in the
bifurcation diagram in Fig. 1 (right panel) [27]. Specifically,
we note the following. (i) The range x < −ξ�t < 0 is
the left far field, plane wave region. Here, jqðx;tÞj ¼ qoþ
Oð1=t1=2Þ as t → ∞. Apart from a nonlinear contribution
to the phase, the behavior is similar to the linear case.

(ii) The range −ξ�t < x < ξ�t is an oscillation region. Here,
qðx; tÞ ¼ qasympðx; tÞ þOð1=t1=2Þ, with the asymptotic sol-
ution being a modulated traveling wave (elliptic) solution.
This is the most interesting region, and it is described in
some detail below. (iii) The range x > ξ�t > 0 is a right far
field, planewave region.Here, jqðx; tÞj ¼ qo þOð1=t1=2Þ as
t → ∞, similar to region (i).
The kind of results described above are not unprec-

edented. Indeed, bifurcation diagrams dividing the long-
time asymptotic behavior of solutions of the focusing NLS
equation into regions of different genuses were obtained in
different contexts in Refs. [28,29]. What is different here,
however, is the physical setting, the specific results, and
their physical interpretation.
The modulated traveling wave region.—We focus on the

range 0 < x < ξ�t. (The solution in the range −ξ�t < x < 0
is similar.) The leading-order solution in this region is
expressed in terms of Jacobi elliptic functions and repre-
sents a slow modulation of the traveling wave (periodic)
solutions of the focusing NLS equation [30]. In particular,

jqasympðx; tÞj2 ¼ ðqo þ αimÞ2
− 4qoαimsn2½Cðx − 2αret − XÞ;m�; ð4Þ

where m ¼ 4qoαim=C2 is the elliptic parameter,
C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2re þ ðqo þ αimÞ2
p

, and the slowly varying offset
X is explicitly determined by the reflection coefficient.
The four points �iqo and α� ¼ αre � iαim are the branch
points associated with the elliptic solutions of the focusing
NLS equation [31,32]; α� are slowly varying functions
of ξ, determined via a single, implicit equation that can
be easily solved numerically. The slowly varying wave
number, velocity, and period are, respectively, αre, 2αre, and
2KðmÞ=C [33]. In particular, α → 1=

ffiffiffi

2
p

as x → ξ�t and
α → iqo as x → 0. The first limit corresponds to the
boundary between the genus-1 region and the plane wave
region, in which case m → 0 and the solution reduces to a
constant. In the second limit, m → 1, corresponding to the
solitonic limit of the elliptic solution.
The universal profile of the solution amplitude in

the oscillation region (neglecting for simplicity the
ξ-dependent effect of the reflection coefficient) is shown

FIG. 2. The sign of Imθ in the complex k plane for various
values of the similarity variable ξ ¼ x=t and qo ¼ 1: (i) ξ ¼ −6,
corresponding to x < −ξ�t; (ii) ξ ¼ −5.2, corresponding to
−ξ�t < x < 0; (iii) ξ ¼ 3, corresponding to 0 < x < ξ�t; and
(iv) ξ ¼ 6.5, corresponding to x > ξ�t. Gray, Imθ > 0; white,
Imθ < 0.
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in Fig. 3 at two different values of time. The envelope of
jqasympj (the dashed lines), given by qo � αim, is time
independent and depends only on ξ. Conversely, the
oscillating structure is slowly varying in the xt frame.
The boundary between the oscillation region and the plane
wave regions can be understood within the context of
Whitham modulation theory [31,32].
Discussion.—We have computed the longtime asymp-

totic behavior of a large class of perturbations of a constant
background in a modulationally unstable medium for
which no discrete spectrum is present. Recall that the
linear stage of MI is characterized by exponential growth.
As we showed [16], “linearizing” the IST (i.e., looking for
solutions that are a small deviation from the constant
background) yields exactly the same result as directly
linearizing the NLS equation around the background.
For longer times, however, the growth saturates and one
obtains the asymptotic state described in our Letter. More
precisely, in this Letter we showed that all such perturba-
tions evolve towards an asymptotic state described by slow
modulations of the traveling wave solutions of the focusing
NLS equation. We emphasize the broad nature of our
results. The initial conditions of the problem only deter-
mine a slowly varying offset for the elliptic solution via the
reflection coefficient, whereas the structure of the solution
as a modulated elliptic wave is independent of it. In this
sense, the asymptotic stage of MI is universal.
Since the NLS equation has a wide range of appli-

cability, from nonlinear optics to deep water waves,
acoustics, plasmas, and Bose-Einstein condensates, we
expect that the results of this Letter apply to all of the
above physical contexts. In particular, our results provide
explicit predictions about the behavior of laser pulses
in optical fibers and gravity waves in one-dimensional
deep water channels. The results also have potential
connections to the phenomena of rogue waves [3,4] and
integrable turbulence [34].

MI is often studied in the framework of sideband
perturbations of a constant background. The results of this
Letter can therefore be compared to those in the case of
periodic boundary conditions. There, the instability is
ascribed to the presence of homoclinic solutions [35].
The initial stage of MI in that scenario was studied in
Ref. [36] with a three-mode model. However, the IST
machinery used to study the periodic case (namely, the
theory of finite-genus solutions [37,38]) is very different
from the one in the IVP with NZBC, used here [39]. Most
importantly, the physics in the two cases is different. For
example, (i) in the periodic case there is an amplitude
threshold below which no instability occurs, whereas no
such threshold exists on the infinite line, and (ii) in the
periodic case, radiation cannot escape to infinity, and
therefore it is doubtful that a longtime asymptotic state
even exists. Also, sinusoidal excitations are a special case
of perturbations with several Fourier components, each
contributing with its own amplitude and phase. Such
generic perturbations are characterized by their Fourier
transform (or, equivalently, spectral data), and this is
precisely the situation studied in this Letter.
The above results can also be compared to the semiclassical

limit of the focusing NLS equation with ZBC [40]. The study
of that scenario requires more sophisticated analysis, and the
results are also more complicated. Moreover, numerical
simulations of the semiclassical case become more and more
sensitive to roundoff error as ℏ → 0 [35]. In contrast, the
present case does not appear to be as sensitive. The robustness
of our analytical predictions is confirmed in Fig. 3, which
shows anumerical simulation ofEq. (1)with a smallGaussian
perturbation of the constant background. The numerical
results show that there is an intermediate time range for
which one sees the asymptotic behavior but no catastrophic
roundoff. As a result, there appear to be no fundamental
obstacles to the possibility of observing experimentally the
behavior described in this Letter.
Semiclassical limits and longtime asymptotics problems

are often studied using Whitham theory [23]. However,
the Whitham equations for the focusing NLS equation are
elliptic, and therefore the corresponding IVP is ill posed.
This is well known in the case of ZBC (e.g., see Ref. [40]),
and it remains true in the case of NZBC. While special
solutions to the Whitham equations also exist in the
focusing case [31,32], it should be clear that the IST-
related methods used here are the only way to study
the nonlinear stage of MI for generic perturbations of
the constant background. Indeed, we see no obstacles to
generalizing the present calculations to include the pres-
ence of discrete eigenvalues, which will allow for the
first time a study of the interactions between solitons and
radiation in modulationally unstable media.

This work was partially supported by the National
Science Foundation under Grant No. DMS-1311847.
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FIG. 3. (Left panels) The asymptotic solution jqðx; tÞj (the
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numerical simulations of Eq. (1) with a small Gaussian pertur-
bation of the constant background. The red lines show the
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