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Abstract
We describe the interaction pattern in the x–y plane for a family of soliton
solutions of the Kadomtsev–Petviashvili (KP) equation,

(−4ut + uxxx + 6uux)x + 3uyy = 0.

The solutions considered also satisfy the finite Toda lattice hierarchy. We
determine completely their asymptotic patterns for y → ±∞, and we show that
all the solutions (except the 1-soliton solution) are of resonant type, consisting
of arbitrary numbers of line solitons in both asymptotics; that is, arbitrary
N− incoming solitons for y → −∞ interact to form arbitrary N+ outgoing
solitons for y → ∞. We also discuss the interaction process of those solitons,
and show that the resonant interaction creates a web-like structure having
(N− − 1)(N+ − 1) holes.

PACS numbers: 02.30.Jr, 02.30.Ik, 05.45.Yv

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In this paper we study a family of solutions of the Kadomtsev–Petviashvili (KP) equation

∂

∂x

(
−4

∂u

∂t
+

∂3u

∂x3
+ 6u

∂u

∂x

)
+ 3

∂2u

∂y2
= 0 (1.1)

which can be written in the bilinear form [7],[−4DxDt + D4
x + 3D2

y

]
τ · τ = 0. (1.2)

Here Dx , Dy and Dt are the Hirota derivatives, e.g., Dm
x f · g = (∂x − ∂x ′)mf (x,

y, t)g(x ′, y, t)|x=x ′ etc, and u is obtained from the tau-function τ(x, y, t) as

u(x, y, t) = 2
∂2

∂x2
log τ(x, y, t). (1.3)
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It is well known that some solutions of the KP equation can be obtained by the Wronskian
form τ = τM (see the appendix and also [4]), with

τM = Wr(f1, . . . , fM) :=

∣∣∣∣∣∣∣∣
f

(0)
1 · · · f

(0)
M

...
. . .

...

f
(M−1)
1 · · · f

(M−1)
M

∣∣∣∣∣∣∣∣ (1.4)

where f
(n)
i = ∂nfi/∂xn, and {fi(x, y, t) | i = 1, . . . , M} is a linearly independent set of M

solutions of the equations (see (A.4)),

∂fi

∂y
= ∂2fi

∂x2

∂fi

∂t
= ∂3fi

∂x3
for 1 � i � M. (1.5)

For example, the 2-soliton solution of the KP equation is obtained by the set {f1, f2}, with

fi = eθ2i−1 + eθ2i i = 1, 2 (1.6)

where the phases θj are given by linear functions of (x, y, t),

θj (x, y, t) = −kjx + k2
j y − k3

j t + θ0
j j = 1, . . . , 4 (1.7)

with k1 < k2 < k3 < k4. This ordering is sufficient for the solution u to be nonsingular.
(The ordering k1 �= k2 < k3 �= k4 is needed for the positivity of τ2.) Note, for example, that
if k1 < k3 < k2 < k4, τ2 takes zero and the solution blows up at some points in (x, y, t).
Formula (1.6) can be extended to the M-soliton solution with {f1, . . . , fM} [8].

On the other hand, it is also known that the solutions of the finite Toda lattice hierarchy
are obtained by the set of tau-functions {τM |M = 1, . . . , N} with the choice of f -functions,{

f1 = ∑N
i=1 eθi =: f

fi = f (i−1) 1 < i � M � N
(1.8)

where the phases θi, 1 � i � N , are given in the form (1.7) (see, for example, [13]). This
implies that each tau-function τM gives a solution of the KP equation. If the f -functions are
chosen according to (1.8), the tau-functions are then given by the Hankel determinants

τM =

∣∣∣∣∣∣∣∣∣

f (0) f (1) · · · f (M−1)

f (1) f (2) · · · f (M)

...
...

. . .
...

f (M−1) f (M) · · · f (2M−2)

∣∣∣∣∣∣∣∣∣
(1.9)

for 1 � M � N . Note here that τN = C exp(θ1 + · · · + θN), with C = constant, yielding the
trivial solution. Note also that τM and τN−M produce the same solution with the symmetry
(x, y, t) → (−x,−y,−t), due to the duality of the determinants (i.e. the duality of the
Grassmannians Gr(M,N) and Gr(N − M,N); see also lemma 2.1). The finite Toda lattice
hierarchy is defined in the Lax form [3]

∂L

∂tn
= [Bn,L] n = 1, . . . , N − 1 (1.10)

where the Lax pairs (L,Bn) are given by

L =




b1 a1 0 · · · 0

a1 b2 a2
. . .

...

0 a2
. . .

. . . 0
...

. . .
. . . bN−1 aN−1

0 · · · 0 aN−1 bN




Bn = 1
2 ((Ln)>0 − (Ln)<0)
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and where C>0 (C<0) denotes the strictly upper (lower) triangular part of a matrix C. Here the
flow parameters ti are chosen as t1 = x, t2 = y and t3 = t for the KP equation. The functions
an and bn are expressed by


a2

n = τn+1τn−1

τ 2
n

n = 1, . . . , N − 1

bn = d

dt
log

τn

τn−1
n = 1, . . . , N

(1.11)

where τ0 = 1. Then the tau-functions τn satisfy the bilinear equations
1
2D2

xτn · τn = τnτn,xx − (τn,x)
2 = τn+1τn−1 (1.12)

which are just the Jacobi formulae for the determinants D := τn+1, i.e.

D

[
n + 1
n + 1

]
D

[
n

n

]
− D

[
n

n + 1

]
D

[
n + 1

n

]
= D

[
n, n + 1
n, n + 1

]
D. (1.13)

Here D
[

i, j

k, l

]
denotes the determinant obtained by deleting the ith and j th rows and the kth and

the lth column in D [5].

Remark 1.1. According to the Sato theory (see, for example, [14]), these bilinear equations for
the KP equation and the Toda lattice hierarchy are the Plücker relations with proper definitions
of the Plücker coordinates τY labelled by Young diagrams Y = (�1, �2) with �1 � �2 giving
the numbers of boxes in Y,

τ(0,0)τ(2,2) − τ(0,1)τ(1,2) + τ(0,2)τ(1,1) = 0 (1.14)

which is a Plücker relation on the Grassmannian Gr(2, 4). For the KP equation, those Plücker
coordinates are related to the derivatives of the tau-function τM ,



τ(0,0) = τM

τ(0,1) = ∂xτM

τ(0,2) = 1
2

(
∂2
x + ∂y

)
τM

τ(1,1) = 1
2

(
∂2
x − ∂y

)
τM

τ(1,2) = 1
3

(
∂3
x − ∂t

)
τM

τ(2,2) = 1
12

(
∂4
x − 4∂x∂t + 3∂2

y

)
τM.

Then the Hirota bilinear equation (1.2) is equivalent to the Plücker relation (1.14). For the Toda
lattice equation, the Jacobi formula (1.13) can be considered as (1.14) with the identification
τ(0,0) = D etc.

We should also recall that the solutions of the Toda lattice equation show the sorting
property of the Lax matrix L [12]; that is,

L −→
{

diag(λ1, . . . , λN) as x → ∞
diag(λN, . . . , λ1) as x → −∞ (1.15)

where λ1 > λ2 > · · · > λN are the eigenvalues of L. These eigenvalues are related to the
parameters ki in (1.7) as λi = −ki (see below).

In this paper, we are concerned with the behaviour of the KP solutions (1.3) whose tau-
functions are given by (1.9). We describe the patterns of the solutions in the x–y plane where
each soliton solution of the KP equation is asymptotically expressed as a line, namely,

x = c±y + ξ± for y → ±∞
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with appropriate constants c± and ξ± for a fixed t. In particular, we find that all the
solutions (except the 1-soliton solution) are ‘resonant’ solitons in the sense that these solutions
are different from ordinary multi-soliton solutions. The difference appears in the process
of interaction, which results, for example, in a different number of solitons (or lines)
asymptotically as y → ∞ or y → −∞.

In our main result (theorem 2.5) we show that for the solution with the tau-function given
by (1.9) with (1.8), the numbers of solitons in asymptotic stages as y → ±∞, denoted by N±
are given by

N+ = M N− = N − M.

Thus, the total number N of exponential terms in the function f in (1.8) gives the total number
of solitons present in both asymptotic limits, i.e. N = N− + N+, and the number of outgoing
solitons N+ is given by the size of the Hankel determinant (1.9). We call these solutions
‘(N−, N+)-solitons’. In particular, if N = 2N+ = 2N−, the solution describes an N+-soliton
having the same set of line solitons in each asymptotics for y → ±∞. However, these multi-
soliton solutions also differ from the ordinary multi-soliton solutions of the KP equation. The
ordinary n-soliton solution of the KP equation is described by n intersecting line solitons
with a phase shift at each interaction point. If we ignore the phase shifts, these n lines form
(n − 1)(n − 2)/2 bounded regions in the generic situation. However, the number of bounded
regions for the (resonant) N+-soliton solution with (1.9) is found to be (N+ −1)2; for example,
even in the case of a 2-soliton solution there is one bounded region as a result of the resonant
interaction. In general, we show in proposition 3 that for the case of a (N−, N+)-soliton
solution, the number of bounded regions (holes) in the graph is given by (N− − 1)(N+ − 1),
except at finite values of t in the temporal evolution.

These resonant N+-soliton solutions are similar to some of the solitons of the coupled KP
(cKP) hierarchy recently studied in [9], where such solutions were called ‘spider-web-like’
solutions. The analysis of finding web structure that we describe in the present study may also
be applied to the case of the cKP hierarchy.

2. Asymptotic analysis of the solutions

Before we discuss the general case for the tau-function (1.9) with (1.8), we present some
simple cases corresponding to a (1,1)-soliton and a (2,1)-soliton solution; the latter turns out
to be the resonant case of an ordinary 2-soliton solution of the KP equation.

As explained in the appendix, we first note that the (N−, 1)-soliton can be described as
the solution of the Burgers equation (A.3),

∂w1

∂y
+ 2w1

∂w1

∂x
= ∂2w1

∂x2
with w1 = − ∂

∂x
log τ1.

An explicit solution of this equation is a shock, which corresponds to the case of N = 2, i.e.,
N− = 1 and τ1 = eθ1 + eθ2 . The solution w1 is then given by

w1 = 1
2 (k1 + k2) + 1

2 (k1 − k2)tanh 1
2 (θ1 − θ2)

→
{
k1 as x → ∞
k2 as x → −∞ (for k1 < k2)

which leads to the 1-soliton solution of the KP equation,

u = 2
∂2

∂x2
log τ1 = 1

2
(k1 − k2)

2sech2 1

2
(θ1 − θ2). (2.1)
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c=3/2 c=1 /4

c=3/4

w1=1

w1=1/2

w1=-1/4

Figure 1. The confluence of two shocks of the Burgers equation with (k1, k2, k3) = (− 1
4 , 1

2 , 1),
which also represents a resonant soliton solution of the KP equation. Here and in the following,
unless indicated otherwise, the horizontal and vertical axes are respectively x and y, and the graph
shows contour lines of the function u(x, y, t) = −2∂xw1(x, y, t) for a fixed t.

In the x–y plane, this solution describes a plane wave u = �(kxx + kyy − ωt) having the
wavenumber vector k = (kx, ky) and the frequency ω,

k = (−k1 + k2, k
2
1 − k2

2

) =: k1,2 ω = k3
1 − k3

2 =: ω1,2.

Here (k, ω) satisfies the dispersion relation, 4ωkx + k4
x + 3k2

y = 0. We refer to the 1-soliton
solution (2.1) as a line soliton, which can be expressed by a (contour) line, θ1 = θ2, in the x–y

plane. In this paper, since we discuss the pattern of soliton solutions in the x–y plane, we refer
to c = dx/dy as the velocity of the line soliton in the x direction; that is, c = 0 indicates the
direction of the positive y-axis.

Now we consider the case of a (2,1)-soliton, whose tau-function is given by

τ1 = eθ1 + eθ2 + eθ3 .

This situation is explained in [15], and the solution describes the confluence of two shocks.
Taking k1 < k2 < k3 without loss of generality, for y → −∞ the two shocks (which
correspond to line solitons for u) have velocities c1,2 = k1 + k2 and c2,3 = k2 + k3, and the
single shock for y → ∞ has velocity c1,3 = k1 + k3. This case is illustrated in figure 1
with (k1, k2, k3) = (− 1

4 , 1
2 , 1

)
. A simple analysis (see below for more details) shows that the

function w1 = −∂x log τ1 takes the following asymptotic values: w1 ∼ k1 = − 1
4 for large

x,w1 ∼ k3 = 1 for large −x and in the middle region for large −y,w1 ∼ k2 = 1
2 .

This Y-shape interaction represents a resonance of three line solitons. The resonance
conditions for three solitons with the wavenumber vectors {ki,j |1 � i < j � 3} and the
frequencies {ωi,j | 1 � i < j � 3} are given by

k1,2 + k2,3 = k1,3 and ω1,2 + ω2,3 = ω1,3 (2.2)

which are trivially satisfied by those line solitons. Here we point out that this solution is also
the resonant case of the ordinary 2-soliton solution of the KP equation. As we mentioned
earlier, the ordinary 2-soliton solution is given by the M = 2 tau-function (1.4) with (1.6).
The explicit form of the τ2-function is

τ2 = (k1 − k3) eθ1+θ3 + (k1 − k4) eθ1+θ4 + (k2 − k3) eθ2+θ3 + (k2 − k4) eθ2+θ4

where, as before, θi = −kix + k2
i y − k3

i t + θ0
i . Note that if k2 = k3, the τ2-function can be

written as

τ2 = eθ1+θ2+θ4 [(k1 − k3)	 e−θ4 + (k1 − k4) e−θ2 + (k2 − k4) e−θ1 ]
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where 	 = exp
(
θ0

3 − θ0
2

) = constant. Since the exponential factor eθ1+θ2+θ4 gives zero
contribution to the solution u = 2∂2

x log τ2, the τ2-function is equivalent to the case of a (2,1)-
soliton solution (except the signs of the phases, and more precisely it is a (1,2)-soliton); that
is, the resonant solution with confluence of solitons. Note also that the condition k2 = k3 is
nothing else but the resonant condition in [11], and it describes the limiting case of an infinite
phase shift in the ordinary 2-soliton solution, where the phase shift between the solitons as
y → ±∞ is given by

δ = (k1 − k3)(k2 − k4)

(k2 − k3)(k1 − k4)
.

The resonant process for the (N−, 1)-soliton solutions of the KP equation can be expressed as
a generalization of the confluence of shocks discussed earlier. This case has been discussed
in [10].

We now discuss the general case of (N−, N+)-soliton solutions. In order to describe the
asymptotic pattern of the solution associated with the tau-function (1.9), we start with the
following:

Lemma 2.1. Let f be given by

f =
N∑

i=1

eθi with θi = −kix + k2
i y − k3

i t + θ0
i .

Then for N = N+ + N− and 1 � N+ � N − 1, the tau-function defined by the Hankel
determinant (1.9) has the form

τN+ =
∑

1�i1<···<iN+ �N

	(i1, . . . , iN+) exp


 N+∑

j=1

θij


 (2.3)

where 	(i1, . . . , iN+) is the square of the van der Monde determinant,

	(i1, . . . , iN+) =
∏

1�j<l�N+

(
kij − kil

)2
.

Proof. Apply the Binet–Cauchy theorem [5] for

τN+ = det







eθ1 eθ2 · · · eθN

k1 eθ1 k2 eθ2 · · · kN eθN

...
...

. . .
...

k
N+−1
1 eθ1 k

N+−1
2 eθ2 · · · k

N+−1
N eθN







1 k1 · · · · · · k
N+−1
N

1 k2 · · · · · · k
N+−1
N

...
...

. . .
. . .

...

...
...

. . .
. . .

...

1 kN · · · · · · k
N+−1
N







.

�

One should note from (2.3) that the τN+ -function contains all possible combinations of
N+ phases from the set {θj |j = 1, . . . , N}, unlike the case of ordinary multi-soliton solutions
of the KP equation. For example, the τ2-function for the 2-soliton solution with (1.6) includes
only four terms, and is missing the combinations θ1 + θ2 and θ3 + θ4. This makes a crucial
difference on the interaction patterns of soliton solutions, as explained in this paper. In
particular, we will see that the (N−, N+)-solitons are all of resonant type in the sense that local
structure of each interaction point in those solitons consists of either (2, 1)- or (1, 2)-solitons.
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η
1 η

2

η
3

η
4

η
5

c

η

Figure 2. The functions ηj (c) = kj (kj − c) for (k1, k2, k3, k4, k5) = (−2,−1, − 1
2 , 3

4 , 3
2 ). The

levels of intersection 0, 1, 2, 3 are respectively denoted by circles, diamonds, triangles and stars.

Remark 2.2. The τN+ -function given by (1.9) is positive definite, and therefore the solution
u has no singularity. In general, the Wronskian (1.4) takes zeros at some points in the
flow parameters. The set of those points is called Painlevé divisor, whose geometry has an
interesting structure related to the Birkhoff stratification of the Grassmannian [1]. Also, if
one includes some exponential terms with negative coefficients in (1.8), the τM -functions
vanish on a set of points in (t1, t2, . . . , tN−1). Then the set of those points can be described as
intersections with the Bruhat cells of the flag manifold (see, for example, [2]).

Let us now define a local coordinate frame (ξ, y) in order to study the asymptotics for
large |y| with

x = cy + ξ.

Here we fix t as a constant and absorb it in θ0
i of (1.7). Then the phase functions θi in f of

(1.8) become

θi = −kiξ + ηi(c)y + θ0
i for i = 1, . . . , N

with

ηi(c) := ki(ki − c).

Without loss of generality, we assume the ordering for the parameters {ki |i = 1, . . . , N},
k1 < k2 < · · · < kN.

Then one can easily show that the lines η = ηi(c) are in general position; that is, each line
η = ηi(c) intersects with all other lines at N − 1 distinct points in the c–η plane; in other
words, only two lines meet at each intersection point. Figure 2 shows a specific example,
corresponding to the values (k1, k2, k3, k4, k5) = (−2,−1,− 1

2 , 3
4 , 3

2

)
.

Now the purpose is to find the dominant exponential terms in the τN+ -function (2.3) for
y → ±∞ as a function of the velocity c. First note that if only one exponential is dominant,
then w1 = −∂x log τN+ is just a constant, and therefore the solution u = −2∂xw1 is zero. Then,
nontrivial contributions to u arise when one can find two exponential terms which dominate
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over the others. Note that because the intersections of the ηi are always pairwise, three or
more terms cannot make a dominant balance for large |y|. In the case of (N−, 1)-soliton
solutions, it is easy to see that at each c the dominant exponential term for y → ∞ is provided
by only η1 and/or ηN , and therefore there is only one shock (N+ = 1) moving with velocity
c1,N = k1 +kN corresponding to the intersection point of η1 and ηN (see figure 2). On the other
hand, as y → −∞, each term ηj can become dominant for some c, and at each intersection
point ηj = ηj+1 the two exponential terms corresponding to ηj and ηj+1 give a dominant
balance; therefore there are N− = N − 1 shocks moving with velocities cj,j+1 = kj + kj+1,
for j = 1, . . . , N − 1 (see again figure 2).

In the general case, N+ �= 1, the τN+ -function in (2.3) involves exponential terms having
combinations of phases, and two exponential terms that make a dominant balance can be found
as follows: Let us first define the level of intersection of ηi(c).

Definition 2.3. Let ηi(c) and ηj (c) intersect at the value c = ci,j = ki + kj , i.e.
ηi(ci,j ) = ηj (ci,j ). The level of intersection, denoted by σi,j , is defined as the number of
other ηl that at c = ci,j are larger than ηi(ci,j ) = ηj (ci,j ). That is,

σi,j := |{ηl|ηl(ci,j ) > ηi(ci,j ) = ηj (ci,j )}|.
We also define I (n) as the set of pairs (ηi, ηj ) having the level σi,j = n, namely

I (n) := {(ηi, ηj ) | σi,j = n for i < j}.

The level of intersection can take the range 0 � σi,j � N − 2. Then one can show:

Lemma 2.4. The set I (n) is given by

I (n) = {(ηi, ηN−n+i−1) | i = 1, . . . , n + 1}.

Proof. From the assumption k1 < k2 < · · · < kN , we have the following inequality at c = ci,j

(i.e. ηi = ηj ) for i < j ,

ηi+1, . . . , ηj−1 < ηi = ηj < η1, . . . , ηi−1, ηj+1, . . . , ηN .

Then, taking j = N − n − 1 leads to the assertion of the lemma. �

Note here that the total number of pairs (ηi, ηj ) is(
N

2

)
= 1

2
N(N − 1) =

N−2∑
n=0

|I (n)|.

We illustrate these definitions in figure 2, where the sets I (n) for the level of intersection
n = 0, 1, 2, 3, which are respectively marked by circles, diamonds, triangles and stars, are
given by 



I (0) = {(η1, η5)}
I (1) = {(η1, η4), (η2, η5)}
I (2) = {(η1, η3), (η2, η4), (η3, η5)}
I (3) = {(η1, η2), (η2, η3), (η3, η4), (η4, η5)}.

For the case of (N−, N+)-solitons, the following formulae are useful:{
I (N− − 1) = {(ηi, ηN++i ) | i = 1, . . . , N−}
I (N+ − 1) = {(ηi, ηN−+i ) | i = 1, . . . , N+}.
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Here recall that N+ +N− = N . These formulae indicate that, for each intersecting pair (ηi, ηj )

with the level N− − 1 (N+ − 1), there are N+ − 1 terms ηl which are smaller (larger) than
ηi = ηj . Then the sum of those N+ − 1 terms with either ηi or ηj provides two dominant
exponents in the τN+ -function for y → −∞(y → ∞) (see more detail in the proof of theorem
2.5). Note also that |I (N± − 1)| = N∓. Now we can state our main theorem:

Theorem 2.5. Let w1 be a function defined by

w1 = − ∂

∂x
log τN+

with τN+ given by (2.3). Then w1 has the following asymptotics for y → ±∞:

(i) For y → −∞ and x = ci,N++iy + ξ for i = 1, . . . , N−,

w1 −→
{

Ki(−,−) := ∑N++i
j=i+1 kj as ξ → −∞

Ki(+,−) := ∑N++i−1
j=i kj as ξ → ∞.

(ii) For y → ∞ and x = ci,N−+iy + ξ for i = 1, . . . , N+,

w1 −→
{

Ki(−, +) := ∑i−1
j=1 kj +

∑N+−i+1
j=1 kN−j+1 as ξ → −∞

Ki(+, +) := ∑i
j=1 kj +

∑N+−1
j=1 kN−j+i as ξ → ∞

where ci,j = ki + kj .

Proof. First note that at the point ηi = ηN++i , i.e. (ηi, ηN++i ) ∈ I (N− − 1), from lemma 2.4
we have the inequality,

ηi+1, ηi+2, . . . , ηi+N+−1︸ ︷︷ ︸
N+−1

< ηi = ηN++i .

This implies that, for c = ki + kN++i , the following two exponential terms in the τN+ -function
in lemma 2.1,

exp


N++i−1∑

j=i

θj


 exp


 N++i∑

j=i+1

θj




provide the dominant terms for y → −∞. Note that the condition ηi = ηN++i leads to
c = ci,N++i = ki + kN++i . Thus the function w1 can be approximated by the following form
along x = ci,N++iy + ξ for y → −∞:

w1 ∼ − ∂

∂ξ
log(	i(+,−) e−Ki(+,−)ξ + 	i(−,−) e−Ki(−,−)ξ )

= Ki(+,−)	i(+,−) e−Ki(+,−)ξ + Ki(−,−)	i(−,−) e−Ki(−,−)ξ

	i(+,−) e−Ki(+,−)ξ + 	i(−,−) e−Ki(−,−)ξ

= Ki(+,−)	i(+,−) e(kN++i−ki )ξ + Ki(−,−)	i(−,−)

	i(+,−) e(kN++i−ki )ξ + 	i(−,−)

where

	i(+,−) = 	(i, . . . , N+ + i − 1) exp


N++i−1∑

j=i

θ0
j




	i(−,−) = 	(i + 1, . . . , N+ + i) exp


 N++i∑

j=i+1

θ0
j


 .
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Figure 3. Asymptotic behaviour of the function w1 with k1 < k2 < · · · � 0 < · · · < kN−1 < kN .
As y → −∞ there are N− jumps, moving with velocities cj,N++j (j = 1, . . . , N−). As y → ∞
there are N+ jumps, moving with velocities ci,N−+i (i = 1, . . . , N+).

Now, from ki < kN++i it is obvious that w1 has the desired asymptotics as ξ → ±∞ for
y → −∞.

Similarly, for the case of (ηi, ηN−+i ) ∈ I (N+ − 1) we have the inequality

ηi = ηN−+i < η1, η2, . . . , ηi−1, ηN−+i+1, . . . , ηN︸ ︷︷ ︸
N+−1

.

Then the dominant terms in the τN+ -function on x = ci,N−+iy + ξ for y → ∞ are given by the
exponential terms

exp


 i∑

j=1

θj +
N+−i∑
j=1

θN−j+1


 exp


 i−1∑

j=1

θj +
N+−i+1∑

j=1

θN−j+1


 .

Then, following the previous argument, we obtain the desired asymptotics as ξ → ±∞ for
y → ∞.

For other values of c, that is for c �= ci,N++i and c �= ci,N−+i , just one exponential term
becomes dominant, and thus w1 approaches a constant as |y| → ∞. This completes the proof.

�

Theorem 2.5 can be summarized in figure 3: as y → −∞, the function w1 has
N− jumps, moving with velocities cj,N++j for j = 1, . . . , N−; as y → ∞, w1 has N+

jumps, moving with velocities ci,N−+i for i = 1, . . . , N+. Each jump represents a line soliton
of the u-solution, and therefore the whole solution represents an (N−, N+)-soliton. Each
velocity of the asymptotic line solitons in the (N−, N+)-soliton is determined from the c–η

graph of the levels of intersections (see figure 2). For example, in the case of (1, 4)-soliton
in figure 2, one incoming soliton has velocity c1,4+1 = c1,5, corresponding to the set I (0),
and four outgoing solitons have the velocities ci,1+i for i = 1, . . . , 4, corresponding to I (3).
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Note that, given a set of N phases (as determined by the parameters ki for i = 1, . . . , N ),
the same graph can be used for any (N−, N+)-soliton with N− + N+ = N . In particular, if
N = 2M , we have N+ = N− = M , and theorem 2.5 implies that the velocities of the M
incoming solitons are equal to those of the M outgoing solitons. However, we show in the next
section that these (resonant) M-soliton solutions are different from the ordinary (nonresonant)
multi-soliton solutions of the KP equation.

We remark that theorem 2.5 determines the complete structure of asymptotic patterns
of the solutions u(x, y, t) given by (1.3) for the Toda lattice equation. In the case of the
ordinary multi-soliton solution of the KP equation, the tau-function (1.4) does not contain all
the possible combinations of phases, and therefore the theorem should be modified. However,
the key idea for the asymptotic analysis of using the levels of intersection is still applicable.
In fact, one can find from the same argument that the asymptotic velocities for the ordinary
M-solitons are given by c2i−1,2i = k2i−1 + k2i where the τM -function is the Wronskian (1.4)
with fi = eθ2i−1 + eθ2i for i = 1, . . . ,M and k1 < k2 < · · · < k2M . Note that the velocities are
different from those of the resonant M-soliton solution.

Finally, it should be noted that the asymptotic values of w1,j := −∂x log τj as ξ → ±∞
show the sorting property of the Toda lattice equation; that is, for j = 1, . . . , N ,

bj = ∂

∂x
log

τj

τj−1
= w1,j−1 − w1,j −→

{
−kj as ξ → ∞
−kN−j+1 as ξ → −∞.

Also, one can easily show that aj → 0 as |ξ | → ∞, which implies the sorting behaviour, i.e.

L −→
{

diag(−k1,−k2, . . . ,−kN) as ξ → ∞
diag(−kN,−kN−1, . . . ,−k1) as ξ → −∞.

Recall here that the set {λ = −ki | i = 1, . . . , N} contains the eigenvalues of the Lax matrix
L, with λ1 > · · · > λN as mentioned in (1.15).

3. Intermediate patterns of soliton interactions

In this section we describe the intermediate patterns of the resonant solitons in the x–y plane.
The key idea is to consider the pattern as a collection of fundamental resonances. The
fundamental resonance consists of three parameters: {k1, k2, k3}, that is, the case of N = 3
with |N− − N+| = 1. Without loss of generality, let us take N− = 1 and N+ = 2, i.e. a (1,2)-
soliton. (The case of a (2,1)-soliton is obtained from the symmetry (x, y, t) → (−x,−y,−t)

of the KP equation, i.e. from the duality of the determinants, τ1 and τ2 for N = 3.) Then,
with k1 < k2 < k3, the pattern of the fundamental resonance is a Y-shape graph as shown
in figure 4. Here and in the following we denote with [i, j ] the asymptotic line soliton
with c = ci,j = ki + kj . Note that I (N− − 1) = I (0) = {(η1, η3)} and I (N+ − 1) =
I (1) = {(η1, η2), (η2, η3)}.

One should note that at the vertex of the Y-shape graph each index appears exactly twice
as the result of resonance, and in figure 4(b) those vertices form a triangle, which we refer
to as a ‘resonant triangle’. The resonant triangle is equivalent to the resonance condition for
the wavenumber vectors in (2.2). Since the vertex of the Y-shape graph consists of three line
solitons, θi = θj , 1 � i < j � 3, the location of the vertex is obtained from the solution of
the equations θ1 = θ2 = θ3, i.e.(

k1 − k2 −(
k2

1 − k2
2

)
k1 − k3 −(

k2
1 − k2

3

)
)(

x

y

)
=

(
θ0

1 − θ0
2 − (

k3
1 − k3

2

)
t

θ0
1 − θ0

3 − (
k3

1 − k3
3

)
t

)
.
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[1,3]

[1,2]
[2,3]

η
1

η
2

η
3

c

η

Figure 4. The Y-shape graph (left) illustrating a fundamental resonance with (k1, k2, k3) =
(−1, − 1

4 , 3
4 ) and the corresponding functions ηi(c), i = 1, 2, 3 (right). The graph to the left

represents contour lines of u(x, y, t). The circle at the level set I (0) corresponds to the incoming
soliton, and the stars at I (1) correspond to the outgoing solitons.

Note here that the coefficient matrix is nonsingular for k1 < k2 < k3, and the location (x, y)

is uniquely determined by a function of t. This implies that there always exists a Y-shape
graph if there are three line solitons satisfying the resonance conditions (2.2). Since the τN+ -
function (2.3) contains all possible combinations of N+ phases, all the vertices in the graph
form Y-shape intersections as a result of dominant balance of three exponential terms in the
τN+ at each vertex. One should also note that a vertex with four or more line solitons is not
generic: A vertex with m distinct line solitons is obtained from the system of m equations,
{θjk

= θjk+1 | k = 1, . . . , m}, in which at least m − 1 equations are linearly independent.
Then for m � 4, this system in (x, y) is overdetermined, so that the solution exists only for
specific choices of θ0

i for fixed values of t. In the cases of both ordinary and resonant 2-soliton
solutions, the two pairs of solitons as y → ±∞ are the same, and therefore there are only two
independent equations. Also, as mentioned before, the ordinary 2-soliton solution needs a
balance of four exponential terms to realize an X-shape vertex. However, this balance cannot
be dominant over a balance of three terms with the τN+ -function given by (2.3). In what
follows, we show that the X-shape vertex of an ordinary 2-soliton solution is blown up into a
hole with four Y-shape vertices for the resonant 2-soliton solution.

We now consider the case with N− = 2 and N+ = 2, which describes the resonant
2-soliton solution. We can start with the graph in figure 4 having k1 < k2 < k3. Then we
add k4 with k3 < k4. From theorem 2.5 we find that both asymptotic solutions for y → ±∞
consist of the solitons with [1, 3] and [2, 4]. With k1 < k2 < k3 < k4, the velocity c2,4 of the
additional soliton [2, 4] as y → −∞ satisfies c2,4 > c2,3 > c1,2. For sufficiently large negative
values of t, the [2, 4] soliton starts in the left side of the [1, 3] soliton and first intersects with
the [1, 2] soliton; then the resonance condition determines that the [1, 2] and [2, 4] solitons
merge and make a new outgoing soliton [1, 4]. Since the N+ solitons consist of [1, 3] and
[2, 4], this [1, 4] soliton first branches to [1, 3] and [3, 4]. Then the intermediate [3, 4] soliton
now intersects with the [2, 3] soliton to form the [2, 4] outgoing soliton. (Note that c3,4 is the
largest velocity among these solitons.) The process forming a resonant 2-soliton is shown in
figure 5. Note here that there are four vertices in the interaction pattern, which correspond to
the four resonant triangles in the c–η plane.
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Figure 5. A resonant 2-soliton solution u(x, y, t) (left) with (k1, k2, k3, k4) = (−1,− 1
4 , 3

4 , 2) and
the corresponding functions ηi(c) (right). Both incoming and outgoing solitons correspond to the
intersections marked by circles at the level set I (1).

One should also note that the [2, 4] soliton cannot intersect directly the [1, 3] soliton
unless a [1, 2] soliton or a [3, 4] soliton are created as intermediate solitons. The graph of this
latter case is obtained from figure 5 by letting (x, y, t) → (−x,−y,−t). Also note that the
ordinary 2-soliton solution with those same parameters (k1, . . . , k4) for {f1, f2} in (1.6) has
different asymptotic solitons, namely [1, 2] and [3, 4], and, because of the missing exponential
terms in the τ2-function, this ordinary 2-soliton solution cannot have resonant interactions;
that is, no resonant triangle can be formed with only those exponential terms. This is also true
for any ordinary multi-soliton solutions of the KP equation.

We can continue the process of adding n new incoming solitons to the graph in figure 5
to get a (2 + n, 2)-soliton solution. One can also add m new outgoing solitons to the new
graph to obtain a (2 + n, 2 + m)-soliton solution. This last step can be done by adding m
incoming solutions to a (2, 2 + n)-soliton solution, which is simply obtained by the π rotation
(i.e. (x, y) → (−x,−y)) of the graph of the (2 + n, 2)-solution using the duality of the
determinant. Then one can show the following:

Proposition 3.1. In the generic situation, the number of holes (bounded regions) in the graph
of the (N−, N+)-soliton solution is (N− − 1)(N+ − 1).

Proof. We use mathematical induction. The case N+ = 1 corresponds to the Burgers equation,
and it is immediate to show that the graph of the (N−, 1)-soliton solution has a tree shape; that
is, no holes (see also [10]). Now suppose that the (N−, N+)-soliton has (N− − 1)(N+ − 1)

holes. Add a new phase θN+1, with kN+1 satisfying k1 < · · · < kN < kN+1, which produces a
new, fastest, incoming [N− + 1, N + 1] soliton, and assume that this solution intersects with
the [1, N− + 1] soliton, which is the slowest outgoing soliton. Then the resonant process of
those solitons generates a [1, N + 1] soliton as a (2, 1) process, which then intersects with
the new slowest [1, N + 2] soliton to generate an intermediate [N− + 2, N + 1] soliton. This
intermediate soliton interacts with the second slowest outgoing soliton, the [2, N + 2] soliton,
to generate [2, N + 3] and [N + 3, N + 1] solitons, and so on. This process is illustrated in
figure 6. From this figure, it is obvious that there are N+ − 1 newly created holes; that is, if
(N−, N+) → (N− + 1, N+), the number of holes increases as

(N− − 1)(N+ − 1) → (N− − 1)(N+ − 1) + (N+ − 1) = N−(N+ − 1).

The case of the (N−, N+ + 1) solution can be analysed in the same way using the duality of
the determinants. This completes the proof. �
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Figure 6. A schematic diagram illustrating the creation of new holes in the resonant interaction
process for a (N− + 1, N+)-soliton solution with N− + N+ = N . The new soliton [N− + 1, N + 1]
is assumed to have a resonant interaction with the previous outgoing soliton [1, N− + 1].

One can also show the following from proposition 3.1:

Corollary 3.2. In the generic situation for N− + N+ = N � 3, the total numbers of
intersection points and intermediate solitons in a (N−, N+)-soliton solution are, respectively,
given by 2N−N+ − N and 3N−N+ − 2N .

Proof. By applying mathematical induction on figure 6, one can easily find that the number of
new vertices (intersection points) is 2N+ − 1 and that of new intermediate solitons is 3N+ − 2.
This yields the desired results. �

One should compare these numbers with the case of ordinary M-soliton solution, where
the total numbers of holes and intersection points are 1

2 (M − 1)(M − 2) and 1
2M(M − 1),

respectively. The resonant process blows up each vertex in an ordinary M-soliton solution to
create a hole, so that the total number of holes in a resonant M-soliton solution is given by

1
2 (M − 1)(M − 2) + 1

2M(M − 1) = (M − 1)2.

Note also that the total number of vertices in a resonant M-soliton is four times of the vertices
of an ordinary M-soliton, i.e. each vertex is blown up to make four vertices with one hole.

Figure 7 shows a few snapshots illustrating the temporal evolution of a resonant 3-soliton
solution with (k1, . . . , k6) = (− 5

2 ,− 5
4 ,− 1

2 , 1
2 , 3

2 , 5
2

)
. This resonant 3-soliton is similar to

the ‘spider-web-like’ soliton solution found for the cKP equation (cf figure 10 in [9]), even
though the underlying equation is different in those two cases. As described in this paper,
the behaviour is determined by the structure of the tau-function which is just the sum of
exponential functions. The tau-functions of the KP and cKP equations have the same structure
for those solutions.
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Figure 7. Snapshots illustrating the temporal evolution of a resonant 3-soliton solution u(x, y, t)

with (k1, . . . , k6) = (− 5
2 , − 5

4 ,− 1
2 , 1

2 , 3
2 , 5

2 ) and θ0
1 = · · · = θ0

6 = 0: (a) t = −10, (b) t = 0, (c)
t = 10, (d) t = 20. Note the symmetry (x, y, t) ↔ (−x, −y,−t) in (a) and (c).

Figure 8 shows the temporal evolution of a (4,3)-soliton solution with (k1, . . . , k7) =
(−3,−2,−1, 0, 1, 2, 3). In both figures 7 and 8, it can be observed that different intermediate
solitons mediate the interaction process at different times. Also note that, for some finite
values of t, the number of holes in the solution changes. However, proposition 3.1 applies in
the generic situation, and the total number of holes remains (N− − 1)(N+ − 1), namely four
holes in figure 7 and six holes in figure 8. In both figures, we have set all θ0

i = 0, so that all
line solitons merge initially at the origin. It should be noted that even though several solitons
might merge at the same point for some finite values of t, generically the resonant interactions
are always among three solitons, i.e. fundamental resonances, as explained in this paper.

Finally, we would like to point out that the KP equation has a large variety of multi-soliton-
type solutions. Among those solutions, we found that, since the τN+ -function of the resonant
(N−, N+)-soliton for the Toda lattice hierarchy contains all possible combinations of phase
terms {θi | i = 1, . . . , N}, the interaction process for these solutions results in a fully resonant
situation. On the other hand, the ordinary M-soliton solutions display a nonresonant case; that
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Figure 8. Snapshots illustrating the temporal evolution of a (4,3)-soliton solution u(x, y, t) with
(k1, . . . , k7) = (−3, −2,−1, 0, 1, 2, 3) and θ0

1 = · · · = θ0
7 = 0: (a) t = −8, (b) t = 0, (c) t = 8,

(d) t = 16. Note the symmetry (x, y, t) ↔ (−x, y, −t) in (a) and (c).

is, resonant triangles representing either (2, 1)- or (1, 2)-solitons cannot be formed because of
the missing exponential terms in the tau-function. One can then find a partially resonant case
consisting of ordinary multi-soliton interaction with the addition of some resonant interactions;
one such example is the case having f1 = eθ1 + eθ2 + eθ3 and f2 = eθ3 + eθ4 for the τ2-function
(1.4) where the ordinary 2-soliton interaction coexists with resonant interactions. We will
report the details of the general patterns for multi-soliton-like solutions for the KP equation in
a future communication.
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Appendix. The Wronskian solutions of the KP hierarchy

In this appendix we briefly explain how the Wronskian solution (1.4) is obtained from the
Sato theory (see [14] for more details). The Sato theory is formulated on the basis of a
pseudo-differential operator,

L = ∂ + u2∂
−1 + u3∂

−2 + · · ·
where ∂ is a derivation satisfying ∂∂−1 = ∂−1∂ = 1 and the generalized Leibnitz rule,

∂ν(fg) =
∞∑

k=0

(
ν

k

)
∂kf

∂xk
∂ν−kg for ν ∈ Z.

(Note that the series terminates if and only if ν is a positive integer.) Then the KP hierarchy
can be written in the Lax form

∂L
∂tn

= [Bn,L] with Bn := (Ln)�0 (A.1)

where (Ln)�0 represents the polynomial (differential) part of Ln in ∂ . Here the solution of the
KP equation (1.1) is given by u = 2u2 with t1 = x, t2 = y and t3 = t .

Now writing L in the dressing form,

L = W∂W−1 with W = 1 + w1∂
−1 + w2∂

−2 + · · ·
the KP hierarchy becomes

∂W
∂tn

= BnW − W∂n for n = 1, 2, . . . . (A.2)

Using (A.1), the variables ui can be expressed in terms of wj , for example,{
u2 = −w1,x

u3 = −w2,x + w1w1,x

and so on. (Here and in the following, subscripts x and tn denote partial differentiation.)
The equations for wj are, for example,{

w1,t2 = −2w1w1,x + w1,xx + 2w2,x

w2,t2 = −2w2w1,x + w2,xx + 2w3,x

and so on. Here one can easily show that a finite truncation of W , given by

WM := 1 + w1∂
−1 + · · · + wM∂−M

is invariant under equation (A.2). For example, the W-equation with M = 1 truncation, i.e.
W1 = 1 + w1∂

−1, is just the Burgers equation,

w1,t2 = −2w1w1,x + w1,xx . (A.3)

For the M-truncation, consider the ordinary differential equation for a function f ,

WM∂Mf = f (M) + w1f
(M−1) + · · · + wMf = 0. (A.4)

Let {fj | j = 1, . . . ,M} be a fundamental set of solutions of (A.4). Then the coefficient
function w1 is expressed in terms of the Wronskian for the set of those solutions, i.e.

w1 = − ∂

∂x
log τM with τM = Wr(f1, . . . , fM)

which leads to a solution of the KP equation,

u = 2u2 = −2
∂

∂x
w1 = 2

∂2

∂x2
log τM.
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Recall that for M = 1 this equation gives the well-known Cole–Hopf transformation between
the Burgers equation for w1 and the linear diffusion equation for τ1 = f . One can show from
(A.2) that f satisfies the linear partial differential equations,

∂f

∂tn
= ∂nf

∂xn
for n = 1, 2, . . . .

Thus the equations for (w1, . . . , wM) on the M-truncation are linearizable, and the behaviour
of the solutions is expected to be similar to the case of the Burgers equation. (The M-truncated
equation is a multi-component extension of the Burgers equation [6].) This is one of the main
motivations of the present study.
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