\qquad

Read instructions carefully. Use proper notation and show all work for full credit. Answer both 1 and 2.

1. [50pts]

In the absence of harvesting the population P (in thousands) of a certain fish satisfies the logistic model with growth rate 6 and carrying capacity 6 . Suppose that the fish population is harvested, and that the number of fish harvested per unit time is the following linear function of the population: $\mathrm{h}(\mathrm{P})=4+\mathrm{P}$.
(a) Obtain the ODE that describes the time evolution of fish population with harvesting. Explain your answer.
(b) Calculate and classify the equilibrium points and draw the corresponding phase diagram. [20pts]
(c) Sketch the solution corresponding to the initial condition $\mathrm{P}(0)=3$. What happens to the fish population after a long time in this case?
(d) How would your answers to (a) and (b) change, if $h(P)=8+P$? Show all calculations. If $\mathrm{P}(0)=3$, what happens to the fish population?
2. [50pts]

Consider the following ODE
$A \frac{d^{2} y}{d t^{2}}+B \frac{d y}{d t}=C y+D e^{2 t} y^{2}$
where $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D are constants.
(a) Assume that $\mathrm{A}=0, \mathrm{~B}=1, \mathrm{C}=1$, and $\mathrm{D}=2$.
(i) Find the general solution of the ODE in this case.
(ii) Find the solution satisfying the initial condition $y(0)=1 / 2$.
(b) Assume that $\mathrm{A}=1, \mathrm{~B}=-1, \mathrm{C}=6$, and $\mathrm{D}=0$.
(i) Find the general solution of the ODE in this case.
(ii) Find the solution satisfying the initial condition $y(0)=2, y^{\prime}(0)=3$.

